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6. Overview
• Sec. 7 discusses our application scenario again and

shows the difference between image baselines and our
unlearnable event streams.

• Sec. 8 illustrates the detailed explanation of our algo-
rithm.

• Sec. 9 shows more details of our E2MN and the corre-
sponding mixed counterparts.

• Sec. 10 shows the exploration about the proposed projec-
tion strategy.

• Sec. 11 illustrates the details of five kinds of event pollu-
tion operations used in our experiments.

• Sec. 12 add more experiments on event representations,
time bins, adversarial attack strategies, naive base-
lines, etc.

• Sec. 13 lists the dataset details for N-Caltech101,
CIFAR10-DVS, DVS128 Gesture, and N-ImageNet.

• Sec. 14 depicts more visualization results to evaluate the
imperceptibility of our E2MN.

• Sec. 15 discusses the social impact of our UEVs.
• Sec. 16 lists our future work, including transferabil-

ity evaluation, generation efficiency, and defense mech-
anism.

7. Our UEVs
We propose UEVs mainly focusing on preventing unautho-
rized event data usage. As shown in Fig. 5, the protector,
i.e., data owner, releases the unlearnable dataset for users,
while only the authorized models can learn real semantic
features from these data. The hacker’s unauthorized models
are prevented from learning. This mechanism effectively
protects the interests of data owners and avoids the privacy
leakage caused by data misuse. Fig. 5 shows the working
scenario of our UEVs.

Unlearnable Examples (UEs) are proposed to prevent
image dataset from unauthorized usage. Compared with
UEs, UEVs show great challenges. 1) The image pertur-
bation is directly optimized by deep models to ensure its
effectiveness and imperceptibility. However, the event data
cannot be directly input into deep models to generate the
unlearnable version. 2) Event data shows the binary polar-
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Figure 5. Our scenario of the unlearnable event streams (UEVs).
For authorized training, the UEVs can be effectively used to train
downstream models and achieve correct predictions. However, if
hackers train their authorized networks without our authority that
they cannot achieve the reliable performance.
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Figure 6. Comparison between the image noise and our
E2MN (sample-wise noise).

ity and asynchronous nature that hinders the noise injection.
This sparse property denotes that although we can represent
the event stream via image-like features, the generated noise
cannot be compatible with event data. 3) Different from
image perturbation, event noise should include time stamps
that ensure the unlearnable noise is closely aligned with the
event data, enhancing imperceptibility.

Although UEVs and UEs adopt the same core idea: er-
ror minimizing loss function, to generate unlearnable noise,
using UEs to protect event data is impossible, as shown in
Fig. 6. The noise is only injected into event representations
while the original event data is not protected. Our UEVs
perturb the original event data that shows better practicality.



8. UEVs algorithm
The algorithm of our UEVs is shown in Algorithm 1. Here,
more detailed explanations about our algorithm are pro-
vided. To generate unlearnable event streams, the protector
needs to provide the surrogate model f ′, target dataset Dc,
training step M , and classification accuracy γ. f ′ is em-
ployed to calculate the event error-minimizing noise on the
dataset Dc. M denotes the training iteration of f ′ in every
epoch of noise generation, which is limited since more ef-
forts should be attached on the δ optimization in Eq. (2).
Specifically, the training process of f ′ is listed in Lines#3-
6. We randomly sample M batches of event streams from
Dc and incorporate with the noise (sample-wise noise or
class-wise noise) to train the surrogate model. L∗ is our
loss function (Eq. (5)), consisting of the cosine similarity
loss function and cross-entropy loss function. The final loss
is calculated as:

loss = λ1([1 +
f ′(R(E))conv · f ′(R(E) + δ)conv

||f ′(R(E))conv|| × ||f ′(R(E) + δ)conv||
)]/2)+

λ2(−[lilogf ′(R(E) + δ) + (1− li)log(1− (f ′(R(E) + δ))]),

(6)

where (·)conv denotes the convolution features extracted by
the last convolution layer of surrogate model f ′, B indicates
the batch size, R means event representation, converting
an event stream into the event stack. Eq. (6) illustrates the
training pipeline of f ′ on a batch of event streams. It is
not required to calculate the cost of f ′(R(E)) because this
would cause the surrogate model to focus on learning the
real semantic features, thereby preventing the optimization
of our unlearnable noise.

After training, we generate the event error-minimizing
noise for entire Dc according to Eq. (3), as shown in
Lines#7-10. Clip(·) denotes clipping those noise that ex-
ceed −ϵ or +ϵ back to this region. The noise generation
and surrogate model training would be terminated once the
classification accuracy tested under δ is higher than γ. This
termination demonstrates that the generated noise can effec-
tively guide the model to conduct predictions without rely-
ing on image semantics. Therefore, the noise δ is able to
prevent the unauthorized model from learning informative
knowledge from our data.

Due to the special characteristic of event data, our noise
δ is generated based on the event stack. It’s necessary
to conduct event reconstruction to generate the unlearn-
able event stream from its corresponding unlearnable event
stack (Lines#13-17). To ensure the δ can be compatible
with event data, we propose a projection strategy P(·) to
sparsify the noise into {−0.5, 0,+0.5}2. Then, we inte-
grate the projected noise with an event stack and clip it

2In image area, the generated noise is directly added on the images, ren-
dering the unlearnable examples via modifying the pixel values. However,
for event data, which consists solely of binary events, we can only trans-

Figure 7. Illustrative examples of our E2MN.

into [0, 1] to generate the unlearnable event stack. Detailed
noise embedding process is shown in Table 4. Finally, a
retrieval strategy R′ is proposed to search the compressed
time stamps from the original event streams to achieve the
reconstruction. Based on this algorithm, our valuable event
data can be protected well that prevents unauthorized data
exploitation, as shown in Fig. 5.

9. Class-wise and sample-wise noise
Our E2MN consists of two kinds of noise: class-wise noise
and sample-wise noise, which are all generated based on
Eq. (2). The sample-wise noise is generated case by case,
which leads to every generated noise being only workable
for the single event stream. This limits the practicality of
sample-wise noise, especially in the dataset scale grows
or new event streams are captured. Hence, an alternative
way is class-wise noise, which is generated class by class.
It means that a kind of noise can be injected into differ-
ent event streams sampled from the sample class. Another
advantage is that class-wise noise consumes less memory
than sample-wise noise in noise optimization. Although
two kinds of noises achieve similar performance in Table 2,
class-wise noise achieves better stealthiness than sample-
wise noise as shown in Fig. 3 and Table 1.

Considering their respective advantages, we combine the
two noises to explore whether it can bring more benefits.
We have proposed union and addition operations in Sec. 4.3
to evaluate. For ∆s ∨ ∆c, we randomly choose ∆s or ∆c

to protect the event. The form of this kind of noise resem-
bles both of them because only a simple random sampling
operation is employed. For ∆s +∆c, we fuse two kinds of
noise by element-wise addition to perturb the event stream.
As shown in Fig. 7, this configuration increases the number
of perturbations introduced into the event data, resulting in
higher effectiveness (see E4 of Table 3).

10. Projection discussion
Our projection strategy is designed to sparsify the noise δ
to ensure compatibility with event stacks. We illustrate a
detailed confusion matrix of the noise embedding in Ta-

form the event stream into an unlearnable one on the event level via delet-
ing events or inserting new events. Therefore, we define the projected val-
ues as {−0.5, 0,+0.5} to be compatible with event stacks ({0, 0.5, 1.0}).



Table 4. Confusion matrix of embedding the noise (E2MN) into
an event stack (E. stack). The final unlearnable event stack would
be clipped into [0, 1].

δ
−0.5 0 +0.5

E
.s

ta
ck 0 original event original event event deletion

0.5 event generation no event event generation
1.0 event deletion original event original event

Event data Sample-wise noise

Figure 8. Visualization of event data, sample-wise noise, and the
corresponding unlearnable event streams with different projection
parameters τ .

ble 4. If δ = −0.5 is added to a negative event (0), the
event keeps its original value. If added to a positive event
(1), the event is deleted. A new event with negative polarity
is created when adding −0.5 to the pixel value 0.5 sampled
from the event stack. In this section, we showcase the im-
portance of the parameter τ in Eq. (4). As discussed in [22],
the added noise should be imperceptible to human eyes and
does not affect the normal data utility. Hence, we introduce
the parameter τ to balance the imperceptibility and unlearn-
ability of our E2MN. As shown in Fig. 8, the larger τ can
lead to better imperceptibility but the less unlearnable noise
has been introduced, which harms the unlearnability. We
have tested our sample-wise noise with τ = 7/8 on the N-
Caltech101 dataset and obtained the accuracy of ResNet18
by 4.88, which is higher than the accuracy (0.52) tested by
τ = 3/4. This demonstrates the great challenges in balanc-
ing the imperceptibility and unlearnability of our E2MN.

11. Baseline setting

To further evaluate the effectiveness of our UEVs, we intro-
duce the straightforward event distortions as our baselines,
which are inspired from event data augmentation [17] and
backdoor attacks [55]. Data augmentation is proposed to
enrich the training data for improving the model’s perfor-
mance, which usually employs data distortion operations to
augment the sample. Generally, the quality of these aug-
mented samples is lower than the original ones. There-
fore, we propose simple coordinate shifting (CS), times-
tamp shifting (CS), polarity inversion (PI), and area shuf-
fling (AS) based on [17] to corrupt the event streams for pre-
venting unauthorized usage. Additionally, we also propose
the manual pattern (MP) based on backdoor attacks [55]
to perturb our event streams. We inject a pre-defined pat-

tern for those event streams sampled from the same class
to prevent unauthorized data usage, which can be viewed
as a class-wise noise. According to Table 2, we can find
that compromising the quality of our event datasets can de-
grade the performance of downstream models. However,
the unlearnability is rather limited and does not prevent the
downstream models from learning informative knowledge.

12. Additional experiments

Various event representations. In our main experiments,
we adopt the voxel-grid event stack as our event representa-
tion to evaluate the effectiveness. To test the generalizabil-
ity of our UEVs among different representations, the event
frame (EF) [43] and Time surface (TS) [50] are adopted.
As shown in the E1 of Table 5, our UEVs can still prevent
unauthorized event data usage under EF and TS represen-
tations, showing high robustness and generalizability.

Generalizability. According to [9], we set the time bin to
16 to represent the event stream. To evaluate the generaliz-
ability of our UEVs on different time intervals, we change
the size of ∆t to 0.5× and 2× to conduct ablation studies.
as shown in E2 of Table 5, our UEVs still shows high pro-
tection ability to prevent the unauthorized event data usage.

Diverse Adversarial attacks. Apart from the PGD [38]
and FGSM [16] attacks, we add new adversarial attack
methods: C&W [4] and MIFGSM (MIF.) [6]. CW attack
is an optimization-based method that crafts minimal per-
turbations to mislead neural networks while remaining im-
perceptible. MIFGSM is an iterative adversarial attack that
enhances the basic FGSM by incorporating the momentum.
Compared with MIFGSM, CW attack achieves better un-
learnable functionality. As shown in E3 of Table 5, our
method can still achieve reliable unlearnable performance
while adopting different adversarial attacks.

Table 5. Quantitative results tested by Res50 on N-Caltech101.

E1 E2 E3 E4
EF TS 0.5∆t 2∆t C&W MIF. UEs

∆c 5.17 10.09 5.46 4.94 8.73 15.43 5.51
∆s 8.85 16.48 5.17 5.05 12.15 14.47 18.38

Naive image baselines. Image-based methods are unable
to directly secure event data due to data differences, which
can only safeguard the corresponding event representation.
In E4 of Table 5, although the image approach, UEs [22],
performs well in event representations, it cannot prevent
malicious users from misusing the original event.



Clean data Class-wise noise Sample-wise noiseCS TS PS ASMP

Figure 9. Visualization results of various noise forms on the CIFAR10-DVS dataset [31]. Blue/Red points denote the events with p =
+1/−1. Our noise E2MN does not introduce much noise in the background region, which maintains good imperceptibility.

Clean data Class-wise noise Sample-wise noiseCS TS PI ASMP

Figure 10. Visualization results of various noise forms on the DVS128 Gesture dataset [1]. Blue/Red points denote the events with
p = +1/−1. Our noise E2MN does not corrupt the target objects, and the noise distributed in the background region appears quite realistic.

Event to image reconstruction. We employ an event-to-
image method (E2VID [44]) to evaluate the generazibility.
As shown in Fig. 11, our method prevents E2VID [44] from
reconstructing details from the protected event data, thereby
providing solutions for privacy preserving.

Original event Protected by Sample-wise noise Protected by Class-wise noise

Figure 11. Visualization frames reconstructed by E2VID [44].

Unlearnable cluster. We extend our class-wise noise into
a cluster-wise one. We ❶ employ K-Means+ResNet50 to
cluster the N-Caltech101 into 10 classes; ❷ train a surro-
gate model on 10 classes to generate cluster-wise noise;
❸ train ResNet18 on the whole classes (101) with cluster-
wise noise. The cluster version of our method can reduce
the classification accuracy from 0.787 to 0.189.

13. Dataset details
To evaluate the effectiveness of our method, we employ four
popular event-based datasets in our experiments, includ-

ing N-Caltech101 [42], CIFAR10-DVS [31], DVS128 Ges-
ture [1], and N-ImageNet [27]. N-Caltech101 is the neu-
romorphic version of the image dataset, Caltech101 [11],
which has 101 classes and 4356, 2612, and 1741 samples
for training, validation, and testing, respectively. CIFAR10-
DVS is generated based on image datasets CIFAR-10 [29],
where the training set, validation set and testing set con-
tain 7000, 1000, and 2000 samples, respectively. DVS128
Gesture contains 11 classes from 29 subjects under 3 illu-
mination conditions, which has 1176 training samples and
288 testing samples. The N-ImageNet (mini) dataset is de-
rived from the ImageNet dataset. It utilizes an event camera
to capture RGB images shown on a monitor. This dataset
includes 100 object classes, with each class having 1,300
streams for training and 50 streams for validation. Details
of each dataset are shown in Table 6.

14. Visualization comparison

To evaluate the imperceptibility of our E2MN, we show
more visualization results in Fig. 9 and Fig. 10. In Fig. 9, we
sample event streams from the CIFAR10-DVS dataset [31]
to generate the unlearnable ones via five straightforward
distortions and our two kinds of noise. It’s clear that there



Table 6. Details of four used datasets in our experiments.

N-Caltech101 CIFAR10-DVS DVS128 Gesture N-ImageNet

Type Simulated Simulated Real Simulated
Calsses 101 10 11 1000
Resolution 180× 240 128× 128 128× 128 480× 640
Event Camera ATIS camera DVS128 DVS128 Samsung DVS Gen3
Train 4536 7000 1176 130000
Val 2612 1000 288 50000
Test 1741 2000 288 50000

is an x-y offset in the unlearnable event streams generated
by CS compared to the clean data. TS alters time stamps
to pollute the input event streams, resulting in a noticeable
difference between the distorted samples and the clean data.
PI reverses the polarity of the event stream to degrade the
quality, thereby reducing the quality of the training data.
AS rearranges the event data at the block level to produce
unlearnable data, which exhibits low imperceptibility. Our
class-wise noise and sample-wise noise perturb the event
stream with imperceptible noise that shows better invisibil-
ity than other comparison methods. The visualization re-
sults sampled from DVS128 Gesture dataset [1] are shown
in Fig. 10. It’s clear that our E2MN achieves the best un-
learnability while maintaining good imperceptibility.

To visualize the influence caused by our E2MN, we
employ GradCAM to highlight several unlearnable event
streams in Fig. 12. Figures (A), (B), (C), (D), and (E)
are rendered by A-shuffle, M-pattern, P-inverse, Class-wise
noise, and sample-wise noise, respectively. Our method
builds a shortcut between the input samples and labels that
suppresses the model learning semantic features, resulting
in a lower response on the foreground regions.

(A) (B) C) (D) (E)(

Figure 12. GradCAM of event distortions and our methods.

15. Social impact
The social impact of UEVs is multifaceted, addressing key
issues around event data security, privacy, and ethics. By
making event datasets unlearnable, our method helps pro-
tect individuals’ data from being used without authoriza-
tion. This is particularly important in an era where event
data privacy concerns are paramount, and unauthorized data
usage can lead to significant privacy breaches. The method
provides a robust protection way for event data owners, en-
suring that their event streams cannot be exploited by unau-
thorized entities. This fosters greater trust in event data
sharing. With the application of UEVs, there is a push
towards more ethical event data practices. Entities will
need to obtain proper authorization and consent before us-

ing event data, promoting a culture of respect for data own-
ership and user rights.

Overall, our UEVs contributes significantly to the ad-
vancement of secure and trustworthy data sharing, promot-
ing a safer and more ethical event data ecosystem.

16. Future work
UEVs is the first method designed for generating unlearn-
able event streams, which provides a possible solution to
prevent the unauthorized usage of our valuable event data.
We mainly focus on studying the unlearnability of event
streams in the main paper, while causing some limitations
in terms of transferability evaluation, generation efficiency,
and defense mechanism. To address these issues beyond
our research topic in this work, we will explore the follow-
ing directions in the future:
• Transferability evaluation: We plan to extend the evalua-

tion of our method from classification task to other event
datasets and event vision tasks, enhancing the transfer-
ability. This comprehensive testing is helpful to demon-
strate the effectiveness of UEVs that promote the trust-
worthy event data sharing. However, the effectiveness of
UEVs may be decreased across different vision tasks. A
possible solution is that adopt the foundation model as our
surrogate model to calculate the event error-minimizing
noise, which is trained with a large amount of data that
has strong generalization capabilities. It can be applied to
a variety of tasks without training independent models for
each specific task.

• Generation efficiency: According to our experiments, we
find that the efficiency of the sample-wise noise genera-
tion depends on the scale of the event dataset. The larger
the scale of the event dataset, the lower the efficiency of
the sample-wise noise generation. We propose address-
ing this issue via a noise generator. We train this genera-
tor with the surrogate model jointly, which aims to enable
the generated noise to minimize the cost of the surrogate
model. This training pipeline avoids storing the gener-
ated medium noise, which saves efficiency significantly.
Once the optimization has been finished, we can employ
this generator to generate sample-wise noise for each in-
put sample with high efficiency.

• Defense mechanism: It’s crucial to investigate poten-
tial defense mechanisms against the generation of mali-
cious unlearnable event streams. If we release our un-
learnable dataset online, hackers could manipulate these
samples to force their models to learn the information.
By understanding possible defense mechanisms, we can
develop more reliable methods for creating unlearnable
event datasets, thereby preventing unauthorized usage.
Furthermore, elucidating these defense mechanisms can
help users improve the dataset quality, ultimately saving
training time and computing resources.
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