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Outline

As elaborated in the main paper, we uncover a “bursti-
ness” phenomenon and non-Gaussian distributions in the
values resulting from the interaction of the key projector,
query projector, and image patch embeddings within the
Transformer’s self-attention module. We address these is-
sues with several proposed methods called Bilinear Prompt
Tuning (BPT). Experiments demonstrate that all our BPT
methods significantly accelerate learning, reduce parameter
count and computation, and importantly achieves the state-
of-the-art over various benchmark datasets across a range of
model scales, dataset sizes, and pre-training objectives. We
provide more implementation details and additional results
in the supplemental document.

A. Implementation Details

Evaluation datasets. We follow the practice of VPT [7]
to perform the split of train/val/test for 5 FGVC datasets.
Table 6 summarizes the details of the evaluated datasets used
in the paper. Moreover, we sample a subset (e.g. randomly
sampling 10% data for each category) of training data from
ImageNet dataset [2] to study the affects of different training
data size.

ViT architectures. We use the standard ViT [3] archi-
tectures that have a stack of Transformer blocks [17]. Each
block consists of a multi-head self-attention layer and an
MLP layer with LayerNorm [9]. Refer to Table 7 for details
about the models.

Whitening matrix W and bilinear factor B are im-
plemented using a 1x1 convolution layer. We do not use
normalizations in-between or after their multiplication of the
learned prompt P. We tested applying normalizations but
this decreases accuracy.

MAE pre-training does not use [CLS] token [5]. We
follow the original designs and treat global average pooling
on the sequence of [P;X] € R("™+™)*d a5 input for the
classification head. We observe that using [P; X], P or X
yields similar accuracy.

Object detection and instance segmentation. For object
detection and segmentation tasks, we follow the influential

Table 6. Specifications of the downstream-task datasets. We follow
the practice of VPT [7] to split train/val/test for the five FGVC
datasets. In addition, we also study general image classification,
object detection, and instance segmentation tasks on the popular
ImageNet and COCO datasets.

Datasets Description  # Classes Train Val Test

Fine-grained visual recognition tasks (FGVC)

CUB-200 [18] bird classification 200 5,394 600 5,794
NABirds [16] bird classification 555 21,536 2,393 24,633
Flowers [13] flower classification 102 1,020 1,020 6,149
Dogs [8] dog classification 120 10,800 1,200 8,580
Cars [4] car classification 196 7,329 815 8,041
ImageNet [2]  general classification 1,000 1,281,167 50,000 -
COCO[11] object det. and seg. 80 118,287 5,000 -
Table 7. Model architectures.
arch. Layers Patchsize Embeddim MLPsize Heads Params
ViT-Base 12 16 768 3,072 12 86M
ViT-Large 24 16 1,024 4,096 16 307M
ViT-Huge 32 14 1,280 5,120 16 632M
ViT-2B 24 14 2,560 10,240 32 1.89B

Table 8. Hyper-parameters used on ImageNet and COCO. Multiple
values in a cell are for different model sizes. Here, Ir, wd and dp
stand for learning rate, weight decay, and drop path rate, respec-
tively. Full fine-tuning also use a layer-wise learning rate decay.

Methods batch Ir wd dp epochs
ImageNet

Full fine tuning 1024  4e-3/1e-2(2B)  0.05 0.1/0.1/0.2/0.3  100/50/50/35
BPT 1024 0.1/0.2/0.2/0.3  0.01 0 100
coco

Full fine tuning 16 le-4 0.1 0.1 37
BPT 16 Se-4 0.1 0.0 37

ViTDet [10], which uses pre-trained ViT as backbone. We
use the ViT’s final feature map (16-stride, prompt tokens
are discarded) to build a simple feature pyramid [10]. We
remove the window attention modules [12, 17] as the back-
bone is frozen during prompt tuning, which allows the object
detector to be directly adapted high-resolution input images
without concerning about reaching memory limits or slowing
down training speed. We use two hidden convolution layers
for Region Proposal Networks [15] and 4 hidden convolution
layers for the Rol heads as per [10, 20]. These hidden con-
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Table 9. Results of Fig.??. Experiments of scale backbones and epochs use 10% of the ImageNet-1K’s training images.

backbone

training data training epochs

Methods ViT-B  ViT-L ViT-H ViT-2B 1%

3% 10%  30% 100% 100 200 300 400

Full fine-tuning 56.80 69.46 7443  76.82 27.68
SPT-Shallow [19] 63.64 73.77 7623  77.61 44.35
BPT-Shallow 64.63 7523 7797 7980 4543

4346 56.80 6891 7639 56.80 - - -
55.52 63.64 67.17 69.98
56.79 64.63 6892 72.15

63.64 6437 64.54 64.61
64.63 6479 6493 65.05

Table 10. A study of which Transformer blocks used to insert
prompt for the deep version of BPT. Here, “3 + 1" means insert
prompts into the first 3 blocks and the last block.

4+0 3+1 2+2 143  0+4
81.66 81.38 82.00 80.87

interval

76.83 78.45

volution layers are followed by LayerNorm [9]. The training
last for 3x schedule.

Hyper-parameters. We search for the learning rate (Ir),
weight decay (wd), drop path rate (dp), and epochs for each
model size (B, L, H, 2B) in each downstream task. The
hyper-parameters used for ImageNet and COCO with MAE
pre-training are in Table 8.

BPT-Deep is derived by straightforwardly extending
BPT-shallow to more Transformer blocks, similar to VPT-
Deep [7] and SPT-Deep [19], and yields remarkable per-
formance improvements over shallow variant. However,
BPT-Deep introduces more learned parameters, 7.54 X more
than BPT-Shallow. To reduce parameters, we study a par-
tial prompt-tuning protocol: only insert prompts in the /ast
Transformer blocks, e.g., 6 or 4. This protocol was also used
in other visual tuning works [5, 14, 21].

We observe that the layers at which prompts are inserted
have a significant impact. Table 10 is a comparison and eval-
uated on CUB-200. As our default settings for deep variant,
learning prompts in the last 4 blocks can achieve accuracy
close to that of learning all blocks. This phenomenon is sim-
ilar to that of partially fine-tuning deep neural networks that
fine-tuning the last few layers can achieve accuracy close to
Full fine-tuning [1, 5, 6].

We also study an interval sampling: we split the pre-
trained backbone into 4 subsets of blocks (e.g., 3 in each
subset for the 12-block ViT-B). We insert prompts in the first
block of each subset. This strategy is reasonably good: it
has 80.87% accuracy, 3.0 higher than the shallow variant,
but lags behind our default settings.

B. Additional Results

Table 9 is the scale-up counterpart of Fig. 5. All ViT
backbones are self-supervised pre-trained by MAE [5] and
report the top-1 accuracy on ImageNet val-set.

Table 11 presents pre-task results on 5 FGVC datasets,
with ImageNet-21K supervised pre-trained ViT-B backbone.

Table 11. Per-task results on FGVC benchmarks of Table ??, with
supervised pre-trained ViT-B/16 backbone.

Methods CUB-200 NABirds Flowers Dogs Cars
Full fine-tuning 87.3 82.7 98.8 89.4 845
Linear probing 85.3 75.9 97.9 86.2 513
VPT-S [7] 86.7 78.8 98.4 90.7 68.7
SPT-S [19] 90.2 85.1 99.5 89.3 864
BPT-S (ours) 90.1 86.2 99.6 894 874
VPT-D [7] 88.5 84.2 99.0 90.2 83.6
SPT-D [19] 90.6 87.6 99.8 89.8 89.2
BPT-D (ours) 90.5 88.1 99.9 90.1 89.9

Fig. 6 compares detection and segmentation results of
our BPT-shallow and SPT-Shallow [19] on COCO. SPT
exhibits systematic artifacts on overlapping instances. Our
BPT shows no such artifacts.

Fig. 7 and Fig. 8 display distributions of entries of
W,WI and W,WIXT”, respectively. We see non-
Gaussian distributions and burstiness (especially in the first
Transformer block) regardless how to pretrain the backbone
(e.g., MAE, MoCO-V3, or ImageNet-21K supervised learn-

ing).

C. Code and Demo

Code. We include our self-contained codebase (refer
to the zip file Code—BPT) as a part of the supplementary
material. Please refer to README . md for instructions how
to use the code. We do not include model weights in the
supplementary material as they are too large (>200MB) that
exceed the space limit. We will open source our code and
release our trained models to foster research.

License. We release open-source code under the MIT
License to foster future research in this field.

Requirement. Running our Python code requires some
common packages, such as PyTorch, TorchVision, and timm.
Please refer to Code—BPT/README . md for more details.

Demo. We use Jupyter Notebook to create three
demos, including plot histogram, evaluate the image
classification accuracy of our BPT models and visu-
alize the results of detection and segmentation. See
demo-BPT-dis.ipynb, demo-BPT-eval.ipynb,
and demo-BPT-det . ipynb for more details.
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Figure 6. SPT [19] vs. BPT on COCO validation images. Here, MAE pre-trained ViT-B with Cascade Mask R-CNN as detector. SPT
exhibits systematic artifacts on overlapping instances (marked by E8@ll arrow).
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Figure 7. The distribution of W, W7 w.r.t Transformer block depth. The backbone is ViT-B (12 blocks) and is pre-trained with three
different pretraining methods (a-c). The three pre-training methods consistently show non-Gaussian distributions and burstiness, especially
in the first blocks.
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Figure 8. The distribution of W, W7 X” w.r.t Transformer block depth. The backbone is ViT-B (12 blocks) and is pre-trained with three
different pretraining methods (a-c). The image tokens X undergo normalizations as default implemented in typical Transformers. We
observe non-Gaussian distributions of these values, and the burstiness (especially in the first block regardless of training methods) which
means relatively few entries have much larger values.
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