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Supplementary Material

Examples of Filtered SAYCam Dataset. The filtered SAYCam training dataset consists of 67,280 image-utterance pairs
in total. We provide some examples below.

Figure 4. Examples of the filtered SAYCam dataset



Implementation Details for Creating Transferred Training Dataset. Starting from LLaVA’s pretraining dataset [6],
which includes approximate 558K image-caption pairs coming from CC3M [13], LAION [12], and SBU [9], we carefully
design few-shot examples to prompt GPT-4o to transform original captions into simple, natural utterances that a caregiver
might say to a two-year-old. Additionally, we instruct GPT-4o to identify captions misaligned with a child’s daily
experience by explicitly outputting an infeasibility flag in its JSON mode. We get 339,826 feasible samples after this step.
The detailed prompt for GPT-4o is provided below.

Figure 5. Full prompt for transferred dataset creation

To enhance visual consistency, we use CLIP similarity [11] to select a subset of samples matching the size of the filtered
SAYCam training dataset. Specifically, we compute CLIP similarity between each image in the filtered SAYCam dataset
and every image in the transferred LLaVA pretraining dataset. Given the significantly larger size of the latter, we retain only
the top 1,000 most similar images for each SAYCam image, setting the similarity of all others to zero, resulting in a sparse
similarity matrix. We then apply the sparse Hungarian algorithm [4] to establish a one-to-one match between images from
the transferred dataset and the filtered SAYCam. Examples of the final transferred dataset can be seen in Figure 6 on the
next page.



Figure 6. Examples of the transferred dataset



Implementation Details for Creating the Visual Two-Word Test. We construct VTWT by sub-sampling the SAYCam
test split and using GPT-4o to generate 5,117 candidate two-word phrases through structured prompts. These prompts
incorporate few-shot examples and Chain-of-Thought (CoT) guidance to enhance phrase quality. Specifically, we first
prompt GPT-4o to generate a detailed image description based on the input image and utterance. Using this description, the
model then generates a pair of two-word phrases—one positive and one negative—that differ in noun, verb, or adjective,
ensuring clear semantic distinctions. The detailed prompt, along with few-shot examples, is shown in Figure 8.
To ensure the quality of the test samples, each sample was manually reviewed by two expert annotators with experience in
vision and language research to verify that: (1) the caption is correctly describing the image in detail, (2) the positive phrase
is concretely depicted in the image, (3) the negative phrase is not depicted in the image, and (4) both the positive and
negative phrases are linguistically plausible. After this review, 967 high-quality test samples remain in the benchmark.
Examples of VTWT test samples are shown in Figure 7 below.

Figure 7. Examples of VTWT Task



Figure 8. Full prompt for VTWT



Implementation Details for Creating Baby Winoground. We construct Baby Winoground using the 967 test samples
from the Visual Two-Word Test (VTWT). Our goal is to modify the original image from VTWT such that the modified
image is associated exclusively with the negative phrase while preserving most of the original content. To achieve this, we
leverage the search and replace functionality of Stability AI’s Stable Image Ultra model [3] as our image-editing tool. This
process requires two prompts:
• Search Prompt: Describes the object, subject, or scene to be replaced in the image.
• Replace Prompt: Specifies the new object, subject, or scene replacing the original.
A direct approach would be to use the positive and negative phrases as search and replace prompts, respectively. However,
the two-word constraint often omits crucial details, making it difficult for the image-editing model to generate accurate
edits. To address this, we prompt GPT-4o to dynamically generate more descriptive search and replace prompts. We provide
few-shot examples and specify key characteristics empirically found to improve edit quality; the full prompt is shown in
Figure 9. As in VTWT, expert annotators manually review all test samples, ensuring that the edited images align exclusively
with the negative phrases. After filtering, 365 high-quality test samples remain. Examples are shown in Figure 10.



Figure 9. Full prompt for Baby Winoground. We uses few-shot examples to generate search and replace prompts for the image-editing
model.



Figure 10. Examples of Baby Winoground Task



Examples of SAYCam Caption. The SAYCam Caption task consists of 294 test samples in total. We provide some
examples below.

Figure 11. Examples of SAYCam Caption task



BabyLLaVA Training and Evaluation Details. BabyLLaVA follows the architecture and training strategy of
LLaVA [5, 6], consisting of a language backbone, a vision backbone, and a two-layer MLP connector.
For the language backbone, we train a small GPT-2 model with 7.18M parameters from scratch using the language portion
of our training corpus. The vision backbone is directly adopted from Orhan et al. [10] and is based on a ResNeXt-50 [15]
model with 23 million parameters, trained from scratch using DINOv2 [8] on all SAYCam video clips, including those
without utterance transcriptions. These clips are subsampled into 9 million frames at 5 FPS. The connector is a simple
two-layer MLP, identical to LLaVA-v1.5.
Our training framework closely follows LLaVA but introduces Stage 0, an additional unimodal pretraining stage for the
language and vision backbones. Unlike LLaVA, which initializes from pretrained CLIP and Vicuna v1.5 [16], BabyLLaVA
requires this extra stage since both backbones are trained from scratch. The full training process consists of the following
three stages. All the stages can be finished within 2 hours on four A6000 GPUs.
• Stage 0: Unimodal Pretraining. The language backbone is trained independently on textual data, while the vision

backbone remains unchanged, as we adopt the pretrained backbone directly from Orhan et al.
• Stage 1: Feature Alignment. Both backbones are frozen, and only the MLP connector is trained to align vision and

language features.
• Stage 2: End-to-End Training. The vision backbone remains frozen while the connector and language backbone are

trained jointly. We also experiment with different freezing strategies (freezing only the vision backbone, only the
language backbone, or neither) and find that freezing only the vision backbone yields the best overall performance.

For evaluation, we observe that the choice of input prompt significantly impacts performance, a phenomenon noted in prior
research [1, 7]. To investigate this effect, we test various prompts, including common patterns of child-directed utterances
(e.g., “Look at” or “What’s that”), as well as the absence of a prompt. Interestingly, omitting the input prompt yields the
best results, likely because it aligns with the model’s training setup, which does not incorporate fixed prompts.

CVCL Training and Evaluation Details. We train and evaluate two variants of the CVCL model from [14]
(CVCL-filtered-aug & CVCL-filtered-random). CVCL-filtered-aug is trained on our filtered SAYCam dataset and our
transferred dataset (section ??), both of which contain approximately 67k image-caption pairs. Similarly,
CVCL-filtered-random is trained on our filtered SAYCam dataset plus a randomly sampled unprocessed subset of
approximately 67k image-caption pairs from LLaVA’s pretraining dataset [6]. We train both variants on a single A100 GPU
for 12 hours each using the default hyperparameters specified in the supplemental info of [14]. For evaluation, we use the
model checkpoint from the last training epoch for each variant.



Out-of-Domain Generalization. A primary aim of our approach is to ensure baby models align with the cognitive and
linguistic limitations of early-stage learners. To empirically validate this property, we explicitly assess baby models on tasks
that exceed typical infant-level developmental capacities, such as advanced visual reasoning (Winoground) and
general-purpose tasks (VQA and BLiMP). As shown in Table 7, baby models (e.g., BabyLLaVA, CVCL) perform
significantly below upper-bound models, affirming their constrained generalization capabilities. This limitation ensures
developmental authenticity, preventing baby models from inadvertently solving complex tasks beyond their intended
cognitive stage.
Interestingly, we find that the performance gap between BabyLLaVA and the larger LLaVA-v1.5-7B model is significantly
greater on these complex, out-of-domain tasks compared to simpler, in-domain tasks such as VTWT (Table ??). This
indicates that observed differences in performance cannot be attributed solely to differences in model capacity (i.e.,
parameter count), but also arise from the complexity and alignment of tasks and datasets with the developmental stage being
modeled. Thus, baby models’ constraints are multidimensional, encompassing not only architectural limitations but also
deliberate choices in task design and dataset construction.

Category Model BLiMPfiltered BLiMPsupplement Winoground VQA DevBench

Upper Bound Models
LLaVA-v1.5-7B 0.7299 0.8300 0.6327 0.6273 0.8570
LLaVA-v1.5-7B-ft 0.7205 0.8032 0.5992 0.4941 0.6300
CLIP-large N/A N/A 0.5638 0.2397 0.7172

Baby Models BabyLLaVA-Llama 0.6772 0.5903 0.5214 0.2312 0.3907
CVCL N/A N/A 0.5221 0.1600 0.3993

Random Guess - 0.5000 0.5000 0.5000 0.1250 0.3750

Table 7. Evaluation results on out-of-domain benchmarks. For BLiMP, Winoground and VQA, please refer to [2] for implementation
details. For DevBench, we report the average score of TROG, WG, LWL and VV.

Out-of-Domain Tasks Ablation Study. We also evaluate both our CVCL and BabyLLaVA model variants on several
out-of-domain benchmarks, including general purpose benchmarks like VQA, and developmental benchmarks such as
DevBench. We make several observations. First, we see that all model variants perform around random chance on
Winoground, indicating that none of the models achieve robust compositional reasoning ability. For VQA and DevBench,
however, both CVCL and BabyLLaVA variants trained on our transferred dataset (CVCL-filtered-aug &
BabyLLaVA-filtered-aug) achieve superior performance, reinforcing the value of our developmentally adapted
general-domain data. In addition, even the weakest BabyLLaVA model outperform all the CVCL variants on VQA,
indicating the advanced reasoning ability of generative VLMs over discriminative VLMs. Finally, the modest performance
across all model variants and tasks reinforces one of our main results that appropriate developmental modeling naturally
constrains generalization.

Model BLiMPfiltered BLiMPsupplement Winoground VQA DevBench

CVCL-filtered N/A N/A 0.5221 0.1600 0.3993
CVCL-filtered-aug N/A N/A 0.4714 0.1641 0.6086
CVCL-filtered-random N/A N/A 0.4935 0.1173 0.5198

BabyLLaVA-filtered 0.6772 0.5903 0.5214 0.2312 0.3907
BabyLLaVA-filtered-aug 0.6646 0.5061 0.5455 0.4064 0.5303
BabyLLaVA-filtered-random 0.6746 0.4778 0.5335 0.3659 0.4722

Table 8. Ablation study results on out-of-domain benchmarks. For BLiMP, Winoground and VQA, please refer to [2] for implementation
details and metrics. For DevBench, we report the average score of TROG, WG, LWL and VV.



Transferred Data Efficiency Ablation Study. To further investigate the extra data efficiency brought by our introduced
transferred dataset, we subsample filtered-aug and filtered-random datasets by different fractions, then perform model
training with identical training steps, and test on our in-domain benchmarks. Figure 12 shows the result. The filtered-aug
curve rises more steeply, and using only 25–50% of filtered-aug already equals the full filtered-random on in-domain tasks,
confirming substantial sample-efficiency gains.

Figure 12. Performance on different fractions of datasets.
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