Bridging Class Imbalance and Partial Labeling via Spectral-Balanced Energy
Propagation for Skeleton-based Action Recognition

Supplementary Material

In this Supplementary Material, we first provide the
layer-wise analysis of deep neural networks in Section 1.
Proofs of the theorems presented in the main paper are in-
cluded in Section 2. Furthermore, we detail the experimen-
tal setup in Section 3 and present further analysis of our
experimental results in Section 4.

1. Layer-wise analysis of deep networks

In our research, to further evaluate the effectiveness of both
time and frequency domain representations, we conducted
experiments on traditional time series classification tasks
using a S-layer Fully Convolutional Network (FCN) [9]
as the backbone. These analyses on standard time series
benchmarks provide more generalizable insights into repre-
sentation learning. Our findings, illustrated in Fig. Al (a),
reveal that the time-domain model struggles to capture fea-
tures of Class 5, while the frequency-domain model over-
looks Class 4, underscoring the need for cross-domain inte-
gration to enhance representation capabilities across various
time series analysis tasks. More specifically, the layer-wise
analysis indicates that deep layers of both models perform
poorly on minority classes 4 and 5, highlighting the chal-
lenge posed by class imbalance in cross-domain approaches
that primarily focus on deep representations [10]. In con-
trast, shallow and middle layers effectively identify minor-
ity classes, suggesting that high-level feature biases toward
majority classes overshadow distinctive minority class fea-
tures during data propagation. Therefore, leveraging infor-
mation from these intermediate layers is crucial for devel-
oping robust representations that effectively address class
imbalance.

Fig. Al (b) shows the layer-wise performance of our
model with the proposed shallow and middle feature fusion
modules. Compared to Fig. Al (a), our attention modules
imposed on the shallow and middle layers of the backbone
effectively preserve critical information from minority sam-
ples in both time and frequency domains, especially in mi-
nority classes 4 and 5. Additionally, as discussed in the
main text. Specifically, the shallow-layer attention module
is engineered to preserve critical information from minor-
ity classes, while the mid-layer attention module further re-
fines the model’s discriminative capability for their unique
features. Furthermore, the time-frequency cross-domain
feature fusion improves the model’s comprehensive under-
standing of the input as well, thereby further enhancing its
overall representation capabilities.
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Figure Al. Layer-wise performance of the time and frequency do-
main models on the SleepEDF [5] dataset with 10% labeled to total
samples. The supervision for unlabeled samples were provided by
vanilla label propagation [2].

2. Mathematical Proofs

2.1. The proof of Theorem

Since Label Propagation (LP) algorithm can be formulated
as a linear system [11], in this subsection, we analyze this
linear system formulation [7] to investigate how class im-
balance affects LP’s performance. Specifically, we focus
on scenarios where the class imbalance ratio does not com-
promise the connectivity of the propagation graph, ensur-
ing that information can still propagate effectively between
nodes.

Definition 1 (Steady State). For a Label Propagation (LP)
algorithm , a state M* € R™*C is called a steady state if
it satisfies:

(i) M*=aSM*+(1 — @)Y, where a€(0,1).

(ii) | M (t+1) — M (¢t)|| < € for some small € > 0, where
S is the normalized similarity matrix, Y is the initial label
matrix.

The initial error €(0)=M (0)—M* reflects the levels of
class imbalance and label scarcity, which can be expressed



as a linear combination of the eigenvectors and constant re-
lated to the initial condition: Zi1 1;v;. According to the
stability theory of linear dynamic systems [4], we have:

M (t) =M+e(t). (A1)

Ordering the eigenvalues in non-increasing order by ab-
solute value, we have \;>X\o2> ... >)\p, with |\;|<1 for
all 4. Let {v,vs,...,vp} be the corresponding orthogo-
nal eigenvectors, satisfying Sv;=M\;v; for each i. Then, we
have (aS)'v;=(a\;)'v;. Substituting it into the LP updat-
ing rule M (t+1)=aS-M (t)+(1—a)Y, we can transform
the error into:

e(t+1) an (i) ;. (A2)

Note that the steady-state solution M™ corresponds to
the principal eigenvalue A=1, while € (t) is associated with
the remaining eigenvalues \;<1. Applying the triangle in-
equality yields:

)| <B-a- A3
<o (| _mes nl) Zm (a3)

where o (.S) denotes the eigenvalues of S.

2.2. The proof of Theorem

For a linear system designed to perform label propagation
under class-balanced conditions, we have:

(I — aS’) M
where I is the identity matrix, a€(0,1) is the propaga-
tion parameter, S denotes the similarity matrix under class-
balanced conditions, I — a.S denotes the system matrix, M
and (1 — a)Y represent the steady-state solution and the

constant term under class-balanced conditions, respectively.
The perturbed linear system is expressed as:

=(1-a)Y, (A4)

(I —aS)(M+AM)=(1-0a)Y, (A5)

where S = S + ASand Y = Y + AY denote the per-
turbed matrices, and AM denotes the perturbations caused
by class imbalance. The expression is simplified as:

N -1
AM = (I - as) (1—a)AY +aASM). (A6)
As per our pre-assumption, the perturbation in the LP

similarity matrix, AS, is a result of the induced class im-
balance AY, which can be expressed as:

S=5+d(g(AY)). (A7)

Here, g is a function that maps changes in the label distribu-
tion AY to corresponding shifts in the feature space. d is a
distance function that quantifies the difference between the
class-balanced similarity matrix S and the perturbed one S,
measuring the impact of the class imbalance on the similar-
ity structure. Therefore, AS can be expressed as a higher-
order term in AY . Moreover, the inherent normalization
properties of S further weaken the impact of AS.

This indicates that AS is a smaller perturbation com-
pared to AY, and its impact on the overall system can be
considered negligible for small class imbalance. Thus, this
leads to the simplified expression for AM:

AM =~ (I - aS’)_l (1-a)AY). (A8

Here, (I — «S)~" is an invertible matrix. Taking the L2-
norm of AM, we get:

|AM]|| < (T —a8)7 " (1 —a) |AY]. (A9)
Since
[(1-a)Y|[ =[(I-aS)M| < |I—-aS|-|M]|
(I—a)- Y]
= | M| > .
| M| T—as|
(A10)

Therefore, the relative error in the solution satisfies:

|AM]]
M|

[ —aS]|

(Al1)

Note that while both structural changes (A.S) and label per-
turbation (AY") contribute to the error bound, the main im-
pact of class imbalance is predominantly captured by la-
bel perturbation AY . Consequently, we can obtain a more
concise error bound without losing key insights into the sys-
tem’s behavior. Thus, for small disturbance, we have:

||AM|| 1 _a)‘min ||AY||
< . . (A12)
| M| l-a Y]]
where A\, denotes the minimum eigenvalue of S.

2.3. Derivation of Equation (3)

Let M = M + AM denotes the perturbed propagation
matrix, for the perturbed label propagation linear system in
Eq. (A5), we have:

(1-a(5+as))m

Thereby,

—(1-a) (Y +AY). A13)

AS = [(I - as) AM — (1 - q) AY} M

(Al4)

Q=



To qualitatively explore the effect of class imbalance and
label perturbation on the eigenvalue of S, we analyze how
they influence the AS. Specifically, we can derive the L2-
norm of AS as:

|as] < =2 av) gmte, A
where C' is a constant related to the state of system. This
implies that the upper bound of the norm of AS increases
with ||AY ||, i.e., the degree of class imbalance. Since S is
symmetric, by the spectral theorem, it is diagonalizable and
there exists an orthogonal matrix V' such that S=VAV'.
Therefore, the Bauer-Fike theorem [1] can be applied to
qualitatively investigate the relationship between class im-
balance and eigenvalue deviation in matrix S, demonstrat-
ing how class imbalance can induce spectral shifts in the
system. According to the Bauer-Fike theorem, any eigen-
value A of S satisfies:

min A=A <k(V)-|AS| =|AS||.  (Al6)
)

A€o (S

where o (S) denotes the eigenvalue set of the perturbed ma-

trix S. Since V is an orthogonal matrix, we have the con-

dition number x(V) = |[V||- [V = ||V - [V || = L
Therefore, the upper bound of the eigenvalue deviation

simplifies to:

. ~ 11—« 1

min (A=A < ——[[AY[|-[M7.  (Al7)

Aea(S) «

2.4. Derivation of Equation (6)

Let [M;c, M1, ..., M; c—1] denote the propagation scores
of sample «, with M;. > M;; > ... > M; c_1, where M,
represents the propagation score for the target class c. The
weighted propagation energy of x; is then calculated as:

M,

iJ
Dj

Q
Ep(x;) = —log Zexp (A18)
j=1

Further, let the score margin between the target class c
and a non-target class k€{l,...,C — 1} be defined as
0=M;.— M;y,. We then analyze the behavior of E'(x) under
two distinct scenarios based on the magnitude of 4:

Case 1: For all non-target classes k # ¢, when the prop-
agation scores satisfy M;; < M;., E(x;) can be approxi-
mated as:

M, M,
Ep(z;) ~ —log (exp p]> = —p—_]. (A19)
j j

Therefore, when the score difference ¢ is sufficiently large,
E(x;) is primarily determined by the propagation score of
the target class. This is desirable for a label propagation
metric, as it effectively reflects the target class scores.

Case 2: Assuming there exists a non-target class k
such that the score difference 6 = M,;.—M;;,~0, and for
j¢{c(x), k}, assume M;; < M;.. Thus, E(xz;) can be
expressed as follows:

c c
M, M, M, M,
E exp —L = exp ——=4exp L g exp —Z,
— Dj i
Jj=1

Pe Peiiigteny P
(A20)
Since M, = M;. — 6, we have exp % = exp M#jg =

exp (% — p%). When §~0, we can use Taylor expan-

sion: exp (—%) ~1-— %, thus, 1 4+ exp (—%) ~ 2 — %.

For small values of g, using logarithmic approximation:

log (2 - %) ~log(2) — 1 - %.
Substituting this expression into Eq.(A18), we have:

E,(z) ~ —]\gic — log <1 + exp (—;))
e (A21)

This means that even in ambiguous scenarios where a
non-target class score overshadows the target class score,
the propagation energy metric can still reliably reflect the
high-activation for the target class c. This allows the model
to treat these marginal samples as reliable and effectively
leverage them for training.

The above two cases effectively cover practical scenarios
in label propagation: (1) Case 1 represents high-confidence
predictions where the target class score significantly dom-
inates others (M;. > M;;), and (2) Case 2 captures am-
biguous situations where at least one competing class score
approaches the target class score (M. ~ M;y).

2.5. Derivation of Equation (13)

To derive the derivative of the eigenvalue A, with respect
to the weight p,,,, we begin with the normalized similarity
matrix defined as § = D" 2W D 2. D is the degree ma-
trix with entries D;; = > j w;;. The eigenvalue problem
associated with S is given by Sv; = \,v;, where v; is the
normalized eigenvector corresponding to the ¢-th eigenvalue
A € [—1, 1]

Fg)rA)\ = 11, we have Sv, = v,. This leads to S’D% 1=
D 2WD 2D?>1. Note that D is the degree matrix of
W, namely W1 = D1. Thus, we have SDél = Dél.
Therefore, D31 is the eigenvector of S corresponding to
A = 1, indicating the steady-state distribution of .S. When
the weight matrix is adjusted, the degree matrix D is up-
dated accordingly. Since S is normalized by Df%, any
changes in the weight matrix are offset in S, leaving the
eigenvectors with eigenvalue 1 unchanged.



For A\, # 1, considering that

811)2-]-
Opm

Wi (2pm + As + A))
= — , (A22)

for the diagonal elements of the degree matrix D;;, we have

0D; Wij (2pm + A + A))
= — . A23
apm Z pm + A (pm + A]) ( )
Thus, we get:
Y =-D, . (A24)
opm 4 2 (Pm + i) (pm + 4;)
Next, use the chain rule to differentiate S’
o8 0
= D :WD:
Opm  Opm ( w )
oD~ B - 1 1 8W ~ 0D~ 2
= D 2+D = 2
( Ipm WD =+D Opm Opm
(A25)

The derivative of the eigenvalue A, with respect to p,, can
be decomposed into two distinct terms as follows:

oA, T 85
O " Opm
1 ~
:21): <8D 2VAVD_§‘> Ur-f—UTD a‘/VD_%vT.
apm apm
T T
(A26)

Since D" *W D2 v, =

_1 1
component-wise as ., W;;D;;*vyj=D2 A, vp;.  Conse-
quently, the terms 7 and 75 in Equation (A26) can be sim-
plified as follows:

Tl—ZZ'UM (aD )Zw” Urj

A0, We can express this
1

-5 wz](2pm+A +A ) 1
= -3 ri 127,>\r i
Z“ Z P+ 20) (o + 8)
1 (2pm + A+ Aj)

== *7>\r )

(A27)
Ty=v, D2 8WD*%T

Opm (A28)

o Tz((p )

) P+ A3) (pm + A)

Therefore, Eq.(A26) can be rewritten as:

O\, — Z : (2pm + A + Aj) (A29)

Opm P+ Ai) (P + 4;)
where \,.€[—1,1).

3. More Experimental Details

3.1. Datasets

NTU RGB+D 60 Dataset (NTU 60) [8] consists of 56,880
3D skeleton samples from 40 subjects performing 60 ac-
tions, captured by Kinect V2. Each skeleton has 25 joints
with 3D coordinates. For cross-subject evaluation, 20 sub-
jects are used for training, and the rest for testing. For cross-
view evaluation, data from Cameras 2 and 3 are for training,
while Camera 1 is for testing.

NTU RGB+D 120 Dataset (NTU 120) is an extension
to NTU 60, consisting of 114,480 videos with 120 cat-
egories. Two recommended protocals are presented: 1)
Cross-Subject (X-sub): the training data are collected from
53 subjects, while the other 53 subjects are for testing. 2)
Cross-Setup (X-setup): the training data use even setup IDs,
while testing data use odd ones.

Kinetics-Skeleton [3] is derived from the Kinetics 400
video dataset through automated pose estimation. This
dataset comprises 240,436 training samples and 19,796
evaluation skeleton sequences distributed across 400 action
categories.

HAR includes multi-channel sensor signals from 30 sub-
jects (aged 19-48), performing six activities. Signals cap-
ture 3-axial acceleration and angular velocity at SOHz.
SleepEDF provides single-channel EEG signals (100Hz),
covering five sleep stages: Wake (W), Non-REM (N1, N2,
N3), and REM.

Epilepsy contains EEG signals from 500 subjects. Follow-
ing preprocessing in [6], the data is divided into two classes
for classification tasks.

3.2. Experimental Setup

In our study, SpeLER first undergoes T,, epochs of
supervised training, followed by Tie,,; epochs of semi-
supervised learning. In our experiments, T, is set to 5
for all classical time series classification datasets and UCI
HAR dataset. T is set to 75 for the SleepEEG dataset
and 115 for the others. The Adam optimizer is used with
a learning rate of le—3, the batch-size is set to 128. For
the NTU 60, NTU 120 and Kinetics-Skeleton datasets, the
model is trained for 300 epochs, with the first 10 focused on
supervised learning, and the learning rate is set to 5e—4. We
implemented an early stopping mechanism with a patience
value of 20 epochs. In all experiments, the contrastive loss
weight i is fixed at 0.3, and the base threshold for the prop-
agation energy 7 is set to —9.5. For each mini-batch, sam-



ples from the previous 3 mini-batches are used for pseudo-
label generation. For fair comparison, we adapt the super-
vised skeleton-based action recognition backbones, CTR-
GCN, FreqMix, and class-imbalanced model BRL, to our
semi-supervised settings.

To create partially labeled, class-imbalanced versions of
the dataset, we randomly discard training samples while
maintaining a pre-defined imbalance ratio. Given an im-
balance ratio of m and maximum number n, the num-
ber of labeled samples for each class ¢ is calculated as

N.=nq xwfé;fll. We assume that both labeled and unla-
beled data follow the same imbalanced distribution, reflect-
ing a common real-world scenario.

In the main text, SpeLER with different layer con-
figurations is compared against baselines. To determine
the optimal network depth, we conducted extensive ex-
periments varying the number of layers in our architec-
ture, and the results are shown in Table Al. We found
that the 5-layer configurations achieved the best balance
between model expressivity and computational efficiency
across most datasets. For the 3-layer SpeLER, a single
intra-domain attention module is employed between the first
and third layers. For the 7-layer SpeLER, the shallow fea-
ture fusion module is deployed between the first and the
fourth layers, while the middle feature fusion module is ap-
plied between the fifth and final layers. The 5-layer configu-
ration consistently outperformed both shallower and deeper
alternatives, demonstrating that this architecture effectively
captures the hierarchical information necessary for robust
time series representation while avoiding the overfitting is-
sues that can emerge with excessive depth.

Table Al. Top-1 accuracy of SpeLER with different layer config-
urations on NTU-60 X-Sub.

Layer number 7 =60 =30
3 6391% 65.55%
5 65.02%  67.00%
7 64.85% 66.83%

4. More Experimental Analysis

4.1. Analysis on propagation energy-based tight-
ened reliability assessment

As depicted in Fig. A2, propagation energy scoring ef-
fectively identifies the high-activation borderline samples
(marked by red circles), which are potentially reliable while
deemed unreliable by softmax-based confidence due to the
smoothing effect. The visualization demonstrates that prop-
agation energy allows our method to better leverage border-
line samples during model training, which is critical for im-
proving classification performance in class-imbalanced and
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(a) Energy Score Distribution (b) Softmax Confidence Distribution

Figure A2. Comparison of pseudo-label reliability assessments
for minority class samples using propagation energy and softmax
confidence on NTU-60 (X-sub) (m = 60). Lighter colors indicate
lower confidence. The base threshold for energy scoring is -9.5,
while that for softmax-based confidence is 0.95.

label-scarce scenarios.

4.2. Parameter sensitivity analysis

To examine the impact of predefined parameters on the
SpeLER model, we performed parameter sensitivity exper-
iments, keeping other parameters at their optimal values.
As shown in Fig. A3 (a), increasing the u value causes the
model to prioritize contrastive learning, which can nega-
tively impact the classification performance. Fig. A3 (b)
shows that setting a lower 7 value restricts training to only
the most reliable unlabeled samples. Therefore, setting
a reasonable initial threshold or using adaptive threshold
adjustment is crucial for effectively preserving borderline
samples during training. Besides, using data from three
mini-batches for label propagation yields the best perfor-
mance, balancing effective propagation with minimal com-
plexity from the data volume. Note that the propaga-
tion matrix has dimensions s x batch_size. Our empirical
analysis reveals that the condition number remains below
5 x 103 when s < 5 with feature dimension 128, consis-
tent with spectral convergence properties in random ma-
trix theory. Furthermore, while increasing the number of
neighbors k enhances pseudo-labeling precision and classi-
fication boundary definition, there exists an optimal thresh-
old beyond which additional neighbors introduce noise and
diminish performance by incorporating contextually irrele-
vant data points.

4.3. Model efficacy validation

To assess SpeLER, we compared its inference time with
the TS-TFC model on a wearable sensor-based human
action recognition dataset UCI HAR, two classical TSC
datasets, which also consists of time- and frequency-domain
branches. Additionally, we evaluated an ablation variant
of SpeLER implementing a ResNet backbone architecture,
which employs residual connections to preserve and propa-
gate shallow representations to deeper network layers, anal-
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Figure A3. Parameter sensitivity experimental results on NTU-60
(X-sub). p controls the weight of the contrastive loss in the total
loss function, 7 sets the base threshold for the propagation energy,
s indicates the number of mini-batch used during label propaga-
tion, and k defines the number of nearest neighbors considered
during label propagation.

ogous to the function of our proposed shallow-middle atten-
tion mechanism.

Table A2. Model inference time. TS-TFC model adopts only one
branch in the test phase. For fairness, we report the test time after
combining results from both branches of TS-TFC.

Models HAR SleepEDF Epilepsy
TS-TFC 0.17 s 2.85s 022s
SpeLER-Res 0.33s 4.56 s 0.21s
SpeLER-FCN 0.19 s 3.94s 0.20 s

As shown in Table A2, our SpeLER-FCN model demon-
strates comparable inference efficiency to the TS-TFC
model on the SleepEEG, HAR, and Epilepsy datasets, de-
spite TS-TFC using a 3-layer CNN in each branch. This ef-
ficiency highlights the effectiveness of our intra-domain and
cross-domain feature fusion modules, which enhance clas-
sification performance by efficiently integrating features
across domains without significantly adding to the com-
putational burden. The slightly longer inference time of
SpeLER model on the SleepEDF dataset can be attributed to
the increased processing demands of longer sequences. Fur-
thermore, SpeLER-Res with two residual blocks exhibits
the longest inference time across all datasets.
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