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Supplementary Material

Appendix

The supplementary material includes the following addi-
tional information:

* Sec. A provides implementation details for TokenBridge.

» Sec. B presents speed comparison of our token prediction
against diffusion-based head.

» Sec. C evaluates generalization to different VAE and AE
architectures.

» Sec. D discusses limitations and broader impacts.

* Sec. E showcases additional image generation results.

A. Implementation Details for TokenBridge

We train our models on the ImageNet-1K [7] training set,
consisting of 1,281,167 images across 1,000 object classes.
We adopt the VAE tokenizer from [18] and apply our
dimension-wise quantization with B=64 levels to its contin-
uous features. For the autoregressive model architecture, we
follow MAR [18], with our L model consisting of 32 trans-
former blocks (width 1024) and H model using 40 blocks
(width 1280). Our dimension-wise autoregressive head uses
1024 hidden dimensions with 4 layers for the L model and
6 layers for the H model. At inference time, we employ
temperature sampling and classifier-free guidance [13] to
enhance generation quality. The detailed training and sam-
pling hyper-parameters are listed in Tab. 4.

B. Speed Comparison of Token prediction

We compare the speed of our dimension-wise prediction ap-
proach with MAR’s [18] diffusion-based approach. Table 5
shows the results.

As shown in Table 5, our approach is 5.94x faster than
MAR’s [18] diffusion-based [35] token prediction. This ef-
ficiency advantage comes from our dimension-wise autore-
gressive prediction strategy that directly generates discrete
tokens without iterative sampling procedures. Although our
method requires sequential prediction steps (one per chan-
nel), the lightweight design of our AR head and the ability
to utilize KV cache in transformers maintain high efficiency
compared to diffusion sampling.

The number of prediction steps in TokenBridge corre-
sponds to the VAE [15] channel count (16 in our implemen-
tation). With newer architectures like SDXL’s [25] VAE
that use only 4 channels, our approach would require even
fewer steps.

config ‘ value
training hyper-params
optimizer AdamW [19]
learning rate 4e-4
weight decay 0.02
optimizer momentum (0.9, 0.95)
batch size 2048
learning rate schedule cosine decay
warmup epochs 200
ending learning rate 0
total epochs 800
dropout rate 0.1
attn dropout rate 0.1
class label dropout rate 0.1
precision bfloat16
EMA momentum 0.9999
max grad norm 1.0
sampling hyper-params
temperature 0.97(L)/ 0.91(H)
CFG class dropout rate 0.1
guidance scale 3.1(L)/3.45(H)

Table 4. Detailed hyper-parameters for TokenBridge.

Method Time (ms)
Diffusion (MAR) | 311.25 +1.85
AR (Ours) 52.42 +£0.57

Table 5. Comparison of single image token prediction time.
All measurements conducted with batch size 1 on an NVIDIA
A100 GPU, averaged over 100 runs. Our method achieves a 5.94x
speedup over MAR’s diffusion sampling (100 steps).

C. Generalization to Different VAE and AE
Architectures

To evaluate the generalization of our post-training quantiza-
tion approach, we select two representative alternative au-
toencoders for evaluation: VAVAE [47], a state-of-the-art
VAE with representation alignment, and DCAE [4], achiev-
ing high compression rates without KL loss constraints.
Fig. 9 visualizes the latent feature distributions of differ-
ent autoencoders. Although the value ranges differ across
architectures, all exhibit similar near-Gaussian distribu-
tions. This consistency validates that the bounded, approx-
imately Gaussian property, independent of specific archi-
tectural designs or training constraints like KL regulariza-
tion. As described in the Method section, even linear quan-



tization achieves good reconstruction results, demonstrating
the robustness of our approach across different quantization
schemes.

Tab. 6 shows reconstruction results after applying our
quantization with corresponding rescaling and quantization
granularity. Our method successfully preserves reconstruc-
tion quality across different architectures: VAVAE achieves
identical performance (rFID=0.28) to its continuous base-
line using B=128 and r=3.5, while DCAE matches its base-
line (rFID=0.77) with B=64 and r=8. These results demon-
strate that our post-training quantization approach gener-
alizes effectively across diverse autoencoder architectures
while maintaining reconstruction fidelity.

Figure 9. Latent distributions of different autoencoders. De-
spite architectural differences and training objectives, all three
models exhibit similar near-Gaussian distributions, validating the
generalizability of our quantization approach.

AE |Ori. FID| B | Range |TokenBridge FID

VAVAE | 0.28 128 | [-3.5, 3.5] 0.28
DCAE 0.77 64 [-8, 8] 0.77

Table 6. Reconstruction quality across different autoencoder
architectures. Our post-training quantization preserves recon-
struction fidelity when applied with appropriate parameters.

D. Limitations and Broader Impacts

Limitations. Our approach inherits limitations from the un-
derlying VAE [15] model. The representation quality of the
pretrained VAE directly affects our reconstruction fidelity
and generation capabilities. We note that further improve-
ments in continuous tokenizer would directly benefit our ap-
proach.

Broader Impacts. Our work demonstrates that standard au-
toregressive modeling with cross-entropy loss can achieve
quality comparable to more complex approaches. This find-
ing may encourage simpler model designs in visual genera-
tion tasks and facilitate unified multimodal modeling based
on autoregressive frameworks. Like all generative models,
TokenBridge may reflect biases present in training data and
could potentially be misused to create misleading content,
which warrants careful consideration in deployment.

E. More Visualization Results



Figure 10. Additional image generation results of TokenBridge across different ImageNet [7] categories.



