Ca0s: Rectifying Inconsistencies in Diffusion-Based Dataset Distillation

Supplementary Material

The supplementary material is organized as follows: Sec. 6
presents the process of integrating our method with MAR;
Sec. 7 includes more baseline comparisons and discussions;
Sec. 8 provides more ablation studies; Sec. 9 provide a more
in-depth analysis of different evaluation paradigms; Sec. 10
shows more examples of distilled images across different
datasets; and Sec. 11 discusses the limitations and broader
impacts.

6. Generalizing to MAR

Fig. 5 shows the pipeline of how we utilize the MAR back-
bone for our framework. The process differs from the DiT-
based pipeline in two aspects: (1) Instead of perturbing the
input latent using Gaussian noise w.r.t. random time steps,
we perturb the input by randomly masking patches w.r.t. a
maximum masking ratio; (2) The unconditional guidance is
not available in MAR, thus we use a zero label embedding
obtained by reformulating the Embedding () layer as a
linear layer. The first stage of sample selection is the same
as that of Fig. 2.

We find that MAR exhibits stronger distillation perfor-
mance than DiT, and is more efficient in both distillation
time and GPU memory cost. We utilize the MAR-Base
model, but observe that using larger versions such as MAR-
Large and MAR-Huge does not lead to better performance.
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Figure 5. Pipeline of our method when applied to the Masked
Autoregressive model.

7. More Baseline Comparisons
7.1. Quantitative Comparison with DD Methods

In Tab. 6, we report performance on ImageNet-1K using
ResNet-18. We adopt IGD’s DiT version for fair compari-
son. In Tab. 7, we further compare with IGD without using
sample selection (SS), showing the standalone effectiveness
of single-stage CaO,.

IPC | 10 50 Woof | IPC=10  IPC=50

G-VBSM | 31.4+05 51.840.4 DiT-IGD 67.7£0.3  81.0+0.7
EDC 48.6:03 58.0+02  Ours(w/oSS) | 65.00.7 84506
DiT-IGD | 45.5£0.5 59.8+0.3 Nette ‘ IPC=10  IPC=50
Ours | 46.120.2  60.0£0.0 DITIGD | 44.808 62.0+1.1
Table 6. Baseline comparison _Ours (woSS) | 456514  68.9+1.1
on ImageNet-1K. Table 7. Comparison w/o SS.

In Tab. 8, we present CIFAR-10 results. DATM and PAD
are strong trajectory matching methods but less efficient and
scalable, representing a different paradigm from us.

IPC | SRe’L Ours DATM PAD

10 | 29.3+0.5 39.0+¢1.5 66.8+0.2 76.1+0.3
50 | 45.0+0.7 64.0+0.9 67.4+0.3 77.0+0.5

Table 8. Comparison on CIFAR10.
7.2. Discussion on More Related Works

LD3M [26] is similar to GLaD but replaces the GAN back-
bone with a diffusion model, combining matching-based
approaches (e.g., MTT) with objectives that align latents to
real datasets. In contrast, our method is orthogonal, as we
avoid dataset matching and instead focus on fully leverag-
ing the diffusion model, leading to improved efficiency and
scalability. YOCO [12] and BiLP [39] use sample selection
as preprocessing for matching-based DD to improve effi-
ciency and denoise source data, while our method acts as
a post-processing step tailored to diffusion-based DD. We
also tested their protocols (EL2N, LBPE) and observed up
to a 3% performance drop compared to our design.

8. More Ablations

Level of noise perturbation. Beyond selection strategy
and condition choice, we also investigate the impact of
varying noise perturbation levels in the latent optimization
process. Greater perturbation severity introduces noisier
image input during latent optimization, thereby increasing
denoising difficulty and accentuating key semantic features.
The degree of perturbation is determined by the maximum
time step 7', where we randomly sample t ~ [1,7]. A larger
T increases the amount of noisier inputs during latent opti-
mization. Let 7" represent the total number of time steps;
the impact of noise level is detailed in Tab. 9.

T ImageWoof IPC=10  ImageNette IPC=10

T2 42.7+0.8 61.9+1.6
T/8 44.4+0.2 61.9+1.6
T4 42.3%1.0 62.9+1.0
T2 42.3+1.6 63.5+0.8

T 42.7+£0.7 62.3+0.7

Table 9. Effect of the noise perturbation level.

From the table, we observe that for challenging tasks like
ImageWoof, a lower level of noise perturbation is more ad-
vantageous, while for easier tasks like ImageNette, a rela-
tively higher noise level is beneficial. Additionally, an ex-
tremely low noise level yields sub-optimal performance, as
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does using all time steps. We speculate that this is because
the latent optimization process requires a minimum noise
level to improve image robustness. For harder tasks, op-
timization should be conservative to avoid shifting images
toward the region of another class, while for easier tasks, a
more aggressive approach enhances discriminative features.

Effect of stage ordering. We analyze the ordering the of
the current stage designs. As shown in Tab. 10, reversing the
stages reduces performance and increases distillation time
due to the additional latents requiring optimization.

. . Woof Woof Nette Nette
Ace (%) Time (tuin) ‘ IPC=10  IPC=50 IPC=10  IPC=50
Ca0, 456/15 68.9/64 650/15 84.5/64
Reverse 373746  61.7/115 61.9/46 83.0/115
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ur distilled images on ImageWoof.

\ IPC=10 IPC=50
CG | 42.620.7 67.2+0.6

CFG | 43.3+x1.9 66.8£1.5

Figure 7. Comparison of using classifier-guidance or not.

9. Influence of different evaluation paradigms

We compare the popularly used hard-label [9] and soft-label
[34] evaluation metrics in Tab. 12, using distilled images
from Minimax Diffusion as an example. From the table, we
show that neither of the two approaches can always obtain
better performance.

Table 10. Effect of stage ordering.

Superiority of using generated images. We justify
when generated synthetic images may be a better solution
than randomly sampled real images. Tab. 11 shows that
diffusion-generated images perform better than carefully
selected real ones, especially under lower IPC settings. A
similar phenomenon is also observed on ImageNette.

Acc IPC=1 IPC=10

(%) R18 R50 R101 R18 R50 R101
Real | 13.1+0.8 13.840.6 14.4+1.2 | 39.1+0.9 36.9+0.5 31.8+0.9
Gen | 19.5+0.8 19.9+0.5 20.0£0.9 | 42.6+1.1 38.5+0.3 36.4+1.1

Table 11. Comparison on ImageWoof (same selection settings).

Comparison with classifier-guided models. Fig. 7 com-
pares the performance of using classifier-guided models
with classifier-free counterparts. The reasons we do not
use classifier-guided models are threefolds: (1) From the ta-
ble, we see that guided-diffusion empirically provides lim-
ited discriminative information, performing similarly to its
classifier-free counterpart. (2) They also require additional
classifiers, increasing parameters and being slower than a
simple ResNet. (3) Most diffusion models are trained with
CFG, thus we focus on this family of models to be more
generalizable.

Woof Nette
IPC=1 IPC=10 IPC=50 IPC=1 IPC=10  IPC=50

Hard-label [9] | 19.940.2 36.2+0.2 57.6£0.9 ‘ 31.8£0.6  54.9+0.1 74.2+1.3

Setting

Soft-label [34] | 18.2+1.1 40.1+1.0 67.0+1.8 | 22.6+1.2 61.4+0.7 83.9+0.2

Table 12. Comparison on Minimax images using ResNet18.

We also observe other cases where using hard-labels out-
perform soft-labels:

* For ResNet50 training on ImageNet-100 with Minimax
images, using the ResNetl8 model to generated soft-
labels leads to only 1.0% accuracy. This indicates that
a good expert is critical for successful guidance.

* For ResNetl01 training on ImageNet-1K (IPC=1) with
our method, using hard-labels leads to 6.0 4= 0.4 accuracy
while using soft-labels leads to 5.8 £ 0.7 accuracy. We
induce that the prior knowledge from the expert may be
insufficient when the IPC is low.

From the above results, we conclude that there is cur-
rently no unified evaluation paradigm that is being simul-
taneously effective, stable, and does not require external
prior knowledge. Relevant works such as DD-Ranking [22]
were developed, but yet (March 2025) does not support
ImageNet-level datasets. Benchmarking and unifying the
distilled datasets remains an open question and is of vital
importance.
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10. Additional Visualizations

We provide more visualization results here for a compre-
hensive analysis of our method.

Distilled images of ImageWoof and ImageNette. Fig. 6
and 8 show examples of distilled images under IPC=10 for
ImageNette and ImageWoof. Three samples are shown for
each category. From the distilled images, we see that our
method effectively covers the class distribution and pro-
duces high-fidelity images. One thing we noticed is that al-
though the classification performance on ImageNette is sig-
nificantly higher than that of ImageWoof, the sample qual-
ity of both tasks is similar. The reason is straightforward:
the categories in ImageNette are distinct, and therefore, eas-
ily distinguishable. This observation indicates that the class
composition of a task matters, suggesting that more atten-
tion should be paid to the tasks than to the individual classes
during distillation, supporting the design of our approach.

Distilled images with Minimax Diffusion backbone. We
further provide examples of the images generated via the
Minimax backbone. Fig. 9 shows examples of the distilled
images in ImageWoof. Compared to the DiT backbone, the
use of the Minimax Diffusion backbone further enhances
the diversity of the distilled images. This phenomenon also
suggests the extensibility of our proposed method, indicat-
ing its applicability as a plug-and-play module for existing
and future work.

Distilled images with MAR backbone. Fig. 10 presents
example distilled images generated using MAR as model
backbone. Interestingly, although MAR-distilled images
achieve higher classification performance compared to
those distilled with DiT, we observe that their image qual-
ity is generally lower. In fact, the images shown are those
selected for their best visual quality. We conjecture that the
reason might be: although the overall image quality is low,
the essential features related to the corresponding category
are emphasized, while background and irrelevant features
are de-emphasized. As a result, even if the images appear
visually poor to human observers, they possess strong dis-
criminative capabilities.
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Figure 8. Examples of our distilled images on ImageNette.
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Figure 9. Examples of our distilled images when using the Mini-
max Diffusion model as backbone.
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Figure 10. Examples of our distilled images when using MAR as
backbone.

More analysis on Fig. 4. The optimization objective im-
proves image-label consistency, refining category bound-
aries to enhance class characteristics. Background adjust-
ments may occur because diffusion models, trained with a
noise prediction objective, only fully denoise as ¢ — oo.
Under limited NFE, generated latents remain partially de-
noised, and the changes likely result from removing resid-
ual noise.

11. Limitations and Potential Improvements

Although diffusion-based methods demonstrate strong per-
formance, their applicability is constrained by the limited



conditions these models can handle (e.g. DiTs can only deal
with ImageNet classes). Employing text-to-image models
such as Stable Diffusion can help mitigate this issue, but the
large model size and absence of classification constraints
may hinder practical application.Therefore, developing ef-
ficient and task-adaptive approaches based on text-to-image
models might be a way to enable effective handling of arbi-
trary classes. Moreover, the two inconsistencies we observe
arise from the fundamental difference between generation
and discrimination. Thus, developing a unified framework
for both generation and classification may also significantly
advance the field of diffusion-based dataset distillation.
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