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from Arbitrary-Length Sequences

Supplementary Material

A. Organization
This supplementary covers the diffeomorphic flow, veloc-
ity field analysis, articulated rigidity, dynamic consolidator
architecture, multistage hyperparameters scheduling, com-
plete implementation details, and additional experimen-
tal results. It also outlines additional robustness evalua-
tions (missing regions, additional raw scans, sparse frames,
sparse points, robustness to noise, topological artifacts, and
normals), potential applications (arbitrary mesh discretiza-
tion, consolidating textured scans, and dynamic texture gen-
eration), and limitations (topological changes, rapid motion
transitions, and capturing finer geometric details).

Note: Figures, sections, and tables in the supplemen-
tary material are prefixed with a letter for distinction, while
those without a prefix refer to content in the main paper.

B. Diffeomorphic Flow
We now present the core motivation of our methodology.

Temporal Coherence via Diffeomorphic Flows. 4D Im-
plicit methods [2, 8, 22, 25] represent shapes independently
per frame and lose explicit pointwise correspondences over
time, resulting in temporally incoherent interpolation, dif-
ficulty in handling missing regions (Fig. 9), and noises
(Fig. A9). To address this, we explicitly model deforma-
tion as a diffeomorphic flow via a continuous velocity field,
and factor our representation into two parts:
1. Canonical Shape gc: An implicit spatial function

gc(x) : R3 → R defined at canonical time c = 0.5, im-
plicitly representing the canonical shape Sc = g−1c (0).

2. Velocity Field v: A spatially and temporally varying ve-
locity field v(x, t) : R3×R → R3 defining a continuous
diffeomorphic flow.

Diffeomorphic Flow via ODE Integration. Given the
velocity field v(x, t), we numerically integrate an ordinary
differential equation (ODE) using standard solvers [5] to
obtain flow maps. Specifically, given a point x at time 0,
its forward flow map ϕ→ to the position y at time t is de-
fined as:

∂ϕ→(x,τ)
∂τ = v(ϕ→(x, τ), τ), τ ∈ [0, t)

ϕ→(x, 0) = x,

ϕ→(x, t) = y.

Similarly, we define the backward flow map ϕ←. Prac-
tically, we denote the flow map from arbitrary time t to
canonical time c = 0.5 as ϕ(x, t 7→ c), and its inverse for
evaluation as ϕ(x, c 7→ t). Thus, our deforming shape rep-
resentation is f(x, t) = gc ◦ ϕ(x, t 7→ c). This implicit-
explicit decomposition offers several practical advantages:
• Explicit velocity modeling induces a smooth diffeomor-

phic flow, naturally ensuring consistent pointwise corre-
spondences without requiring separate forward-backward
networks or cycle-consistency constraints (Fig. A12).

• The canonical shape gc aggregates geometric details from
all frames, enabling robust reconstruction even with in-
complete, sparse, or noisy data (Fig. 9, Fig. A9, Fig. A8).

• Using an implicit canonical shape flexibly allows the re-
construction of arbitrary topologies.

• Decoupling shape and motion representation, where the
canonical shape captures fine geometric details and the
velocity field encourages smooth deformation,

C. Velocity Field Analysis
We bias our velocity representation towards a mixture of
low- and medium-frequency velocities. With this, we mit-
igate kinks and abrupt changes in the deformation. In ad-
dition to the Fourier encoding in space-time coordinates in
Sec. 5.1, we use a mixture of two MLP layers to repre-
sent the velocity field itself (see Fig. 6). Consider two
fully connected single-layer networks ζA : Rd → Rh and
ζB : Rh → Rh and with h = 512. A SoftPlus [7] function
activates these MLP layers. The purpose of this compo-
sition is to use the smooth attenuation bias of neural net-
works, where ζB ◦ ζA serves as a low-frequency compo-
nent; using it alone (i.e., wM = 0) would result in the loss
of small details in the deformation. Using ζA alone (i.e.,
wL = 0), as the medium-frequency component, results in
failure to capture global motion. In Fig. A1, we ablate these
weights and demonstrate that the average weighting (i.e.,
wL = wM = 0.5) is a successful choice, even when com-
pared to the conventional skip connection wL = wM = 1.

D. Articulated Rigidity Details
Following [2, 26], physical objects, especially live crea-
tures, tend to move in (softly) rigid semantic parts, such
as the limbs between the joints. These kinematic units
constitute a quasi-articulated system. For this, we adapt a
motion-segmentation module from [26]. For a prescribed
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Figure A1. Additional Velocity Ablation. Given sequential
point cloud inputs, different canonical shapes can be reconstructed
when setting different wM and wL values. An average weighting
scheme works best, and we adopt it throughout our experiments.

number of segments H = 20 (See the Supplementary in
Zhang et al. [26] for the ablations), we learn a motion-
segmentation network that is implemented as a neural field
ζH : R3 → [0, 1]H , that for each location x in the space
of the canonical time c outputs a probability ζH,h(x) of
the point x belonging to segment h (as a partition of unity:∑

h ζH,h(x) = 1). We add a loss term that regularizes the
per-part rigidity, by computing a pair of the rotation ma-
trix and translation vector

{
Rh,i ∈ SO(3), τh,i ∈ R3

}
per

each segment h and time frame i, where we seek that the
flow from ti to c is as-(part-wise)-rigid-as-possible [21],
weighted by the probability of h:

Erigid(i) = Exj∈Pi

∑
h∈[1,H]

ζH,h(ϕ(xj , ti 7→ c))

·∥(Rh,ixj + τh,i)− ϕ(xj , ti 7→ c)∥2,
(1)

In each iteration, we compute the rigid transformation
{Rh,i, τh,i} in closed-form by SVD of the correlation ma-
trix between the segment at time t and that of time c (the
classical ARAP local step). As a by-product of this fitting,
we get a segmentation of the moving object, by considering
the highest probability of each point (Fig. A2).

Figure A2. Motion Segmentation. The motion-segmentation net-
work learns the articulation of the object and segments the (softly)
piecewise-rigidly moving parts (different colors).

E. Experiments
E.1. Experimental Details
Dynamic Consolidator. Our dynamic consolidator (Sec.
4) takes as input a spacetime coordinate η = (x, t) and an
optimizable latent code θ, and outputs the perturbation δ
and confidence score p. As illustrated in Fig. A3, it consists
of MLP layers with 512 neurons per layer.
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Figure A3. Dynamic consolidator architecture.

Multistage Hyperparameters Scheduling. Our experi-
ments are run for 15000 full learning iterations. We im-
plement a scheduling strategy for the velocity-network reg-
ularization weights λkill, λdiri, and λspeed as follows: they are
initially set to 0 for the first 7000 iterations (during which
we do not compute the unused associated derivatives); by
doing so, the velocity field is only guided by Êfit, Eeik and
Erigid. We subsequently increase them as follows: from
λkill = 5 × 10−5, λdir = 8 × 10−5, and λspeed = 1 × 10−3

to 1.5 × 10−3, 3.8 × 10−3, and 2 × 10−2 respectively and
uniformly over the next 5000 iterations. We then maintain
them at 5×10−4, 6.5×10−4, and 5×10−3 respectively for
the final 3000 iterations. We set the fixed λrigid = 1 × 103,
based on [26], and also set λeik = 0.1. Our loss coeffi-
cients λmag, λvar, and λlog for the dynamic consolidator, un-
less otherwise specified (e.g., Fig. A10), are initially set to
λmag = λvar = 0.01, and λlog = 0.10 for the first 3000 it-
erations. We then increase them to 0.4, 30, and 2.0 respec-
tively and uniformly over the next 9000 iterations, main-
taining these final values for the last 3000 iterations.

Code and Hardware. We run all our experiments on a
single NVIDIA A100 80GB GPU. Our code is based on Py-
Torch [16] and uses the torchdiff [5] package to implement
the ODE solver. We use Polyscope [20] for visualization.

ODE Solver. To integrate the flow ϕ from the velocity v,
we use the Dormand–Prince method ‘dopri5’ [6], setting
relative and absolute error tolerances to 1 × 10−3 and 1 ×
10−5, respectively.

E.2. Additional Experiment Results
Additional Qualitative Comparisons. We provide addi-
tional qualitative results for 4D interpolation of synthetic
animals from DeformingThings4D in Fig. A4.

E.3. Additional Robustness Evaluations
Missing Regions. In addition to qualitative evaluations
in Fig. 9, we quantitatively compare our approach with
DSR [23] on partially missing inputs from the animal
dataset. Metrics in Tab. A1 confirm our method’s superior
performance.
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Figure A4. Additional Qualitative Comparisons. Synthetic animal motions from DeformingThings4D [12]: (a) Point clouds, (b)
OFlow [14] + NVFi velocity [11], (c) NDF [24], (d) OFlow [14], (e) DSR [23], and (f) Ours. Our method reconstructs natural tem-
poral deformations, preserving geometric details without oversmoothing or introducing topological artifacts.

Addtional Raw Scans. Further interpolation results on
raw DFAUST scans using our approach are shown in
Fig. A5.

Sparse Frames. In Fig. A6, we show that our method can
smoothly reconstruct motions even from very sparse input
frames. As illustrated in Fig. A7, the competing method
DSR [23] struggles to maintain near-isometric deforma-
tions, likely because it follows the network gradient rather
than physically plausible motions. Furthermore, this com-
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Table A1. Quantitative Comparison: Inputs with Missing Re-
gions. Evaluation corresponds to Fig. 9 (animal dataset).

Sequence Name Method
IoU(%) CD(×10−5)

Mean↑ Min↑ Mean ↓ Max↓

deerFEL WalkhuntedRM
DSR[23] 80.01 74.95 65.72 168.0

Ours 89.06 82.19 6.819 19.39

bear3EP WalkrightRM
DSR[23] 83.11 78.71 118.0 441.8

Ours 89.38 86.21 36.80 90.90

Figure A5. Additional Raw Scans. From top to bottom:
one leg jump, chicken wings, light hopping stiff
from DFAUST (Subject ID = 50002).

parison highlights the importance of our proposed speed-
consistency loss (Espeed), which helps preserve small-scale
structures (e.g., rabbit eyes in Fig. A7) and reduces interpo-
lation artifacts when the input frames are limited.

Sparse Points. Fig. A8 tests our robustness to input point
sparsity with a fixed sequence of 14 frames. Remarkably,
even with only 200 points per frame (a total of 14 × 200
points consolidated at canonical time), we accurately recon-
struct overall geometry and deformation, though fine de-
tails are naturally reduced. Increasing the number of points
per frame to 20K does not further improve reconstruction
quality, indicating a possible saturation due to the underly-
ing SIREN representation. Unlike implicit approaches that
independently handle each frame without aggregation, our
flow-based method consolidates points from all frames into
a canonical shape, significantly boosting robustness.

Robustness to Noise. We evaluate our framework under
noisy conditions in Fig. A9. Gaussian noise is added to
4 randomly selected frames within a 13-frame input se-
quence. Our method, especially the consolidator mod-

Skip 3

Skip 6

Skip 9

Input

Figure A6. Robustness to Frame Sparsity. Interpolation results
at identical time frames using varying input sparsity. ”Skip” de-
notes temporal sampling intervals from the original sequence (e.g.,
a skip of 3 means using frames 1, 4, 7, . . . ). Our method accu-
rately reconstructs motions despite substantial frame skipping.

Figure A7. Comparison under Extremely Sparse Input. (a)
Three-frame Input, (b) DSR, (c) Ours without speed-consistency
loss (Espeed), (d) Ours (full). Our full approach achieves better
interpolation quality and fewer visual artifacts (circled).
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Figure A8. Robustness to Sparse Point Input. Using as few as
200 points per frame maintains shape reconstruction, with gradual
detail loss. Results using 4K and 20K points per frame are nearly
indistinguishable.

ule, effectively filters noise-induced artifacts compared to
DSR [23], which produces overly smoothed geometry due
to global sequence fitting.

Topological Artifacts. Flow-based methods are sensitive
to incorrect canonical shape inference, motivating our con-
solidator module. In Fig. A10, we illustrate topology in-
ference errors, such as mistakenly merging the hand into
the torso. Compared to OFlow [14]+NVFi [11], which
infers incorrect topology, and our framework without the
consolidator (correct topology but geometric artifacts), our
full approach accurately preserves topology and geometry
throughout deformation. Here we adjust the default weight
wlog to 0.005 to slightly reduce early reliance on raw points.

Normals. For input point clouds without provided nor-
mals, we substitute Efit with the SALD loss term [1], which
fits the unsigned distance function. Fig. A11 reveals that
this change significantly compromises geometric recon-
struction, demonstrating the importance of normals in our
formulation. Future research will explore alternative loss
functions to address the absence of normal data.

E.4. Applications
Arbitrary Mesh Discretization. Our method outputs an
implicit canonical representation gc, allowing flexibility in
mesh discretization. Once a desired mesh (representing
Sc) is extracted, vertex positions are directly updated via
the learned velocity field to generate deformations. In

Figure A9. Robustness to Gaussian Noise. Our method (blue)
maintains robustness across various noise levels. At high noise
(σ = 0.04), removing the consolidator leads to visible artifacts.
DSR (green) is particularly prone to noise, as highlighted by cir-
cled artifacts.

Fig. A12, we exemplify this versatility using both triangular
and quadrilateral meshes, demonstrating intuitive deforma-
tions without significant distortion. The quadrilateral mesh
is obtained using Instant Meshes [10].

Consolidating Textured Scans. Our explicit modeling of
flow naturally supports the temporal propagation of vertex
attributes such as textures. In Fig. A13, we demonstrate
this capability using CAPE [17] raw scans. We sample 4K
textured points from input scans, associate these textures
directly with vertices on the canonical shape, and consis-
tently advect textures through the velocity field to other time
frames. Compared to NVFi, our approach yields more ac-
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Figure A10. Robustness to Topological Errors. (a) Input se-
quence; (b) OFlow [14]+NVFi velocity [11]; (c) Ours w/o consol-
idator; (d) Ours (full), which accurately reconstructs motion with
minimal artifacts.

curate and visually coherent textured mesh sequences.

Dynamic Texture Generation. Our approach readily in-
tegrates with mesh texturing workflows. We illustrate in
Fig. A14 how we first apply Meshy [13] to generate tex-
tures on our canonical shape based on textual prompts, then
propagate these textures dynamically using our learned ve-
locity field.

E.5. Limitations

Despite the promising performance of our method, several
challenges remain open for future exploration:

Topological Changes. Our approach assumes consistent
topology under diffeomorphic deformation, making it well-
suited to applications such as motion capture or studying
individual object deformation. However, unlike purely im-
plicit methods (e.g., DSR), which inherently allow topolog-
ical changes such as splitting or merging, our method can-
not model scenarios like protein recombination or molecu-
lar bond-breaking (see supplementary video).

(a)

(b)

(c)

Figure A11. Effect of Missing Normals. (a) Input; (b) Ours with-
out normals; (c) Ours (full). Normals are crucial for accurate ge-
ometry reconstruction.

Input

Quad

Tri

Figure A12. Mesh Representation Flexibility. Our implicit
canonical representation allows natural deformation on both tri-
angular and quadrilateral meshes, without introducing noticeable
tangential distortions.

Rapid Motion Transitions. Our approach may intro-
duce geometric artifacts when motions between consecutive
frames exhibit large variations, even if the deformation re-
mains nearly isometric and topology consistent. Fig. A15
illustrates such a scenario. Although fine-tuning regulariza-
tion terms might reduce this issue, we leave this investiga-
tion as future work

Capturing Finer Geometric Details. While our method
captures geometric details better than many existing ap-
proaches, reconstructing extremely fine-scale features re-
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Figure A13. Consolidating Textured Scans. (a) Input point
clouds (4K points per frame) sampled from raw textured scans.
(b) Result from NVFi. (c) Our result, demonstrating accurate ge-
ometry and texture preservation.

mains challenging (see Fig. A8). Improving high-frequency
detail reconstruction continues to be an important open
problem in geometry processing.

E.6. Questions and Answers
Using fewer frames for large deformation. To demon-
strate our robustness, we interpolate the result of ?? Bottom
using just 3 frames (Fig. A16), maintaining robustness. To
compare with source–target shape deformation, due to un-
available code for 4Deform [19] and issues with training
scripts and pretrained models in Implicit-Surf-Deformation
(ISD) [18], we adopt Neural Implicit Surface Evolution
(NISE) [15], which is a common SOTA baseline under the
same experimental settings (by implicitly fitting two shapes
and building pairwise correspondences). We also compare
to reconstructing the three frames by Poisson reconstruction
which is sensitive to noise and outliers, and generating cor-

Figure A14. Dynamic Texture Generation. We generate textures
on the canonical frame (left) and consistently advect them over
time, achieving temporally coherent textured animations.

Figure A15. Failure with Rapid Motions. Fast movements be-
tween frames can cause geometric artifacts (circled) due to insuf-
ficient temporal resolution.

respondence via Unsupervised Learning of Robust Spectral
Shape Matching [3]. The result is visibly poor, not meeting
the prerequisites for methods [4, 9].

Missing Regions. We reran (Fig. A17) the experiment
from ??, using point clouds with significantly more missing
regions ratios (ratios 0.35–0.63, mean 0.47). Even under
these extreme conditions, our method completes well and
remains robust.

Loss of Details. SIREN-based implicit functions tend to
oversmooth fine structures like fingers. We show this in an
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Sequence with only three frames
(raw scans and point clouds)

4D sequence interpolation (Ours)

Pairwise source-to-target shape deformation (NISE ICCV2023)

Screened poisson reconstruction and shape correspondence

ULSM
TOG2023

ULSM
TOG 2023

Figure A16. Interpolating only 3 frames with a large deformation.

Dense points SIREN reconstruction

SIREN oversmooths fingersMissing Inputs

Ours

Figure A17. Left: Ours restores regions; Right: SIREN over-
smooths.

“upper-bound” static reconstruction with the same number
of samples as in the entire sequence (Fig. A6 and Fig. A17
Right). Mitigating this oversmoothing is beyond our scope
as a valuable direction for future work.
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