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A1. Hyper-parameter Analysis
Analysis of Hyper-parameter K. In Eq. (6), the top-K most re-
lated patch tokens are selected to learn proxies alongside their cor-
responding class token. We perform a hyperparameter analysis
for the value of K, as shown in Tab. A1. The best performance
is achieved when K equals 5. When K is less than 5, increasing
its value incorporates more relevant patch tokens, leading to more
comprehensive proxy construction. However, further increasing K
beyond 5 results in performance degradation. This could be due
to the inclusion of patch tokens that do not belong to the current
class, which negatively impacts the final activation performance.

K 1 3 5 7 10

mIoU(%) 72.5 73.1 73.4 73.2 72.2

Table A1. Ablation study of top-K selected patch tokens in Eq. (6)
on PASCAL VOC 2012 train set. The mIoU (%) metric is used for
evaluation.

Analysis of Hyper-parameter λ. In Eq. (12), λ is employed as
the weight coefficient for OT-assisted proxy-patch contrastive loss.
A hyperparameter analysis for λ is conducted as shown in Tab. A2.
When λ = 0, the Lppc loss is excluded from training. Increasing
λ from 0 to 0.2 improves performance, demonstrating the effec-
tiveness of the proposed Lppc loss. However, when λ exceeds 0.2,
performance declines, indicating that 0.2 is the optimal value for
balancing the loss functions.

λ 0 0.1 0.2 0.3 0.5

mIoU(%) 71.5 72.6 73.4 73.0 71.9

Table A2. Ablation study of weight coefficient λ in Eq. (12) on
PASCAL VOC 2012 train set. The mIoU (%) metric is used for
evaluation.

A2. Integration Details on CLIP-ES
CLIP-ES [8] explores leveraging Contrastive Language-Image
Pre-training models (CLIP) to localize different categories in
WSSS with image-level labels, demonstrating superior perfor-
mances. Further methods, such as [10, 19], integrate their meth-
ods into the CLIP-ES model and achieve significant performances.
However, CLIP-ES [8] is a training-free model, and it uses the
vanilla Vision Transformer (ViT) structure, which only integrates
a class token to classify an image. In this section, we illustrate
the procedure of integrating our framework into the CLIP-ES [8].
Prototype Generation. To adapt the proposed OT-assisted proxy
learning strategy to structures without multiple class tokens, class

prototypes are generated and applied to the framework for seam-
less integration. Specifically, the prototypes Q ∈ R(C+1)×D are
generated using the pseudo labels from the classifier CAM Mcls

as follows:

Q = MAP
(
Mask

(
Mcls

)
⊙ F

)
, (13)

where MAP (·) denotes average pooling over the spatial dimen-
sions of the flattened features. The function Mask(·) generates a
binary mask Mask ∈ RHW×(C+1) based on the pseudo label re-
sults, where Maski,c = 1 indicates that the feature at position i is
assigned to class c. Here, F represents the feature map produced
by the encoder, and ⊙ denotes element-wise multiplication.

These prototypes capture the discriminative characteristics of
each class, as they are constructed from features with confident
CAM scores. Consequently, they effectively function as ‘class to-
kens’. Subsequently, the proposed two learning strategies are ap-
plied to these prototypes.
OT-assisted proxy learning. The first strategy aims to learn prox-
ies that preserve classification capabilities while capturing essen-
tial foreground characteristics, leading to more comprehensive and
accurate resulting CAMs. Prototypes and encoded features are
modeled as two distinct distributions. The objective function is
formulated as:

T∗(S) = argmax
T

M∑
i=1

N∑
j=1

Ti,jSi,j ,

s. t. T1N =
1

M
1M , TT1M = x,

(14)

where S ∈ RM×N is a similarity map and the element Si,j rep-
resents the cosine similarity between the i-th feature and the j-th
prototype. N is the total number of prototypes and N = (C + 1).
M is the number of features and M = HW . 1M is a column
vector of ones with the dimension M . The marginal constraint x
from Eq. (4) is also leveraged in this structure.

Once the optimization process is completed, the subset of fea-
tures is selected based on the optimized transport plan scores,
which quantify their relevance to the prototype:

Hj =

{
Fi | i ∈ argmax

i

(
T∗

i,j , top = K
)}

, (15)

where Hj represents the top-K featuress selected for the j-th pro-
totype.

Subsequently, prototype Qc and the corresponding features in
set Hc are concatenated together. The concatenated result is then
passed through a convolutional layer to generate a proxy Pc for
class c:

Pc = Conv(Concat[Qc,Hc]), (16)

where P ∈ R(C+1)×D are learned proxies. Conv(·) denotes a
convolutional layer, and Concat[·] represents the concatenation op-
eration.



C
on

v.

Proxy 

Prototype

...

Strategy 1: OT-assisted proxy learning  

Optimized
by 2 strategies

 Strategy 2: OT-assisted proxy-patch
                                      contrastive learning

Optimal transport-assisted proxy learning framework mitigates feature gap  

           Eq. (6) 
  top-K feature 
selection for class c 

C
la

ss
ifi

er

Transport 
plan Eq. (9): Select 

 positive pairs
Proxy 1

Proxy 2 Proxy 3

  Proxy  

...

ℒ�_���

Average 
Pooling

ℒ���

Class scores

/ Class token
Patch token/

/ Proxy 

Push Away
Pull Together

Eq. (4): marginal constraint 

H
W

C+1

Channel 
Visualization Activation

Channel 
Visualization Activation

CAM

...

...

c-th prototype

C

Transport plan

ConcatenateC

Sum over 
position axis ...

Text
Encoder

Text 
prompt

Im
age     

Encoder
Encoder

Compute 
gradient

and generate
CLIP-
CAMs 

Feature

Prototype

CLIP-CAM

Figure A1. Illustration of the OTPL framework on CLIP-ES [8]. Prototypes often fail to fully activate foreground features due to the gap
between prototypes and features. Our framework learns proxies to bridge this gap through two strategies. Strategy 1: Optimal Transport-
assisted proxy learning to construct proxies. Image and text prompts are separately fed into the frozen CLIP encoders to extract their
respective features. The features are then leveraged to generate initial GradCAMs [9], using the gradients of calculating cosine similarity
between them. These initial GradCAMs are subsequently refined using Sinkhorn normalization following previous works [8, 17], resulting
in CLIP-CAMs. Confident CAM results from CLIP-CAMs are used to construct prototypes. These prototypes and encoded features are
leveraged to construct a cost matrix for Optimal Transport to conduct an optimization. This process is guided by a marginal constraint
derived from CAM predictions to emphasize class importance. The resulting transport plan provides a probability distribution for assigning
features to prototypes. By combining a prototype with its most related top-K features based on the transport plan, a proxy is learned that
not only maintains the classification ability but also captures essential foreground characteristics, thus better activating relevant features.
Strategy 2: OT-assisted prototype-feature contrastive learning to further align the generated proxies with confident features. The CAM
predictions and optimized transport plan jointly identify positive pairs for each proxy, refining proxy separability and their capacity to
capture non-discriminative foreground characteristics through contrastive training. For simplicity, the proxy generation process is illustrated
with a specific class.

To preserve the classification capabilities of the generated
proxies, supervised learning is applied to these proxies using
image-level labels with a multi-label soft margin classification loss
Lp cls, following previous methods [14, 15]. This can be defined
as follows:

Lp cls =
1

|C|

|C|∑
c=1

lc log (sigmoid (AP (Pc)))

+ (1− lc) log (1− sigmoid (AP (Pc))) ,

(17)

where AP (·) denotes the average pooling function, lc represents
the image-level label for the c-th class, and C is the set of fore-
ground classes.
OT-assisted proxy-patch contrastive learning. OT-assisted
proxy-patch contrastive learning strategy is proposed to better
align the previously generated proxies with confident features. In
our framework, positive samples are identified through the joint
analysis of CAM Mcls and the optimized transport plan T∗ from
previous step, which can be mathematically defined as:

R+
c =

{
Fi | argmax

j
Mcls

i,j = c and argmax
k

T∗
i,k = c

}
,

(18)
where j and k are class indexes, and i is the position index. The
OT-assisted proxy-patch contrastive learning loss is then formu-

lated as:

Lppc = − 1

|R+
c |

∑
c∈C

∑
F+

i ∈R+
c

log
exp(Pc · F+

i /τ)∑
Fi∈Rc

exp(Pc · Fi/τ)
,

(19)
where |R+

c | represents the number of positive pairs within the pro-
totypes and the features, Rc is the set of all features, and τ is the
temperature factor controlling the sharpness of the contrastive loss.
Training Details on CLIP-ES. In our experiment for obtaining
prototype CAMs on CLIP-ES [8], we train our model on a sin-
gle NVIDIA RTX 3090 GPU with 24GB memory, using a batch
size of 16. To ensure robust and consistent results, we adopt
the same data augmentation strategies as previous works, includ-
ing random flipping, random scaling, and cropping, as described
in [3, 6]. For pseudo label generation in the PASCAL VOC 2012
dataset [4], we utilize the IRN [1] post-processing method to re-
fine the CAMs. However, due to the computational cost, we di-
rectly use DenseCRF [5] as the post-processing method in the MS
COCO 2014 dataset [7] following SIPE [3] and SFC [18]. For fur-
ther segmentation model training, we employ ResNet101-based
DeepLabV2 [2] and follow the settings established by previous
methods [11, 12].

A3. Additional Visualization Results
Our analysis reveals that classification-focused class tokens nat-
urally exhibit partial activation patterns. Here, we provide more
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Figure A2. Visualization of channels and activation results (I).

(c) Class token 
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Figure A3. Visualization of channels and activation results (II).

visualization comparison results between class tokens and our
proxies, as shown in Fig. A2 and Fig. A3. As visualized in

these figures, class tokens predominantly activate discrimina-
tive foreground regions through specific encoded channels, leav-



ing other semantically relevant areas under-activated – a phe-
nomenon systematically analyzed in Sect. 3. While previous ap-
proaches [14, 15] attempt to address this limitation through com-
putationally intensive patch-to-patch attention mechanisms in ViT,
the results are not satisfactory enough for all images. In con-
trast, our method introduces a more efficient solution: the pro-
posed proxies directly activate comprehensive feature representa-
tions, achieving substantially more complete foreground coverage,
as evidenced in Fig. A2 (b) and Fig. A3 (d).
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