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Supplementary Material

A. Display Page
We provide a website to showcase the actual enhancement performance of our CogCM and its comparison with other AVSE
methods, available at: https://SoarCld.github.io/CogCM/.

B. Implementation Details
B.a. Data Preprocessing
In all experiments, audio samples are resampled to a sampling rate of 16 kHz, and the frame rate for videos is set to 25 fps.
The length of speech segments is consistently set at 2 seconds. The STFT / iSTFT is performed using a Hamming window
of 400 units in length and a hop size of 100 units. The frame rate of videos is set to 25fps. For facial inputs of SeCMV, the
dimensions are set to H = W = 112; for lip inputs of SeCMPV and SeCMPAV, H = W = 88. During training, random
cropping and horizontal flipping are introduced. In testing, only center cropping is utilized.

B.b. Hyperparameter Settings
The initial learning rate for our model is established at 0.001, with a batch size of 48. Training is conducted throughout
20 epochs. The StepLR strategy is utilized with step size of 5 and a gamma value of 0.5. The AdamW optimizer is used
for training, configured with a weight decay parameter of 0.01 and beta coefficients of (0.9, 0.999). The loss weights are
empirically established as α = 0.9, β = 0.1, and γ = 0.05. The number of Time-Frequency Blocks is set to N = 4.

B.c. Model Details
Signal Context Modeling Module (SiCM): As illustrated in Figure 1, the SiCM is composed of a bidirectional MAMBA
module and a convolutional module. The forward and reversed copies of the input features are each processed by a separate
MAMBA module. Then, the output from the reverse branch is reversed again and added to the forward output. After a
convolution layer extracts local features, a residual connection from the input is added to produce the final output.
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Figure 1. Structure of our SiCM. It consists of two mamba and a convolution layer. R denotes the reverse operation.

Table 1 shows the architectural details of our modules that are not described in detail in the main text.

C. Evaluation Metrics
We employ a comprehensive set of evaluation metrics to assess our system’s performance. These metrics are grouped into
Absolute Metrics and Improvement Metrics.
Absolute Metrics:

Signal-to-Distortion Ratio (SDR) [22]: Measures speech quality by comparing the signal power to the distortion between
the enhanced output and the original clean speech.
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Module Configuration

Audio Encoder
• (0) ConvBlock Encoder

– Conv2d(3, 64, k=(1,1), s=(1,1))
– InstanceNorm2d(64, eps=1e-05, momentum=0.1)
– PReLU(64)

• (1) BasicBlock(c,k,s,p)
– Conv2d(64, 64, k=(3,3), s=(1,1), p=(1,1))
– BatchNorm2D(64)
– PReLU(64)

• (2) BasicBlock(c,k,s,p)
– Conv2d(64, 64, k=(3,3), s=(1,1), p=(1,1))
– BatchNorm2D(64)
– PReLU(64)

• (3) Downsample ConvBlock
– Conv2d(64, 64, k=(1,3), s=(1,2), p=(0,1))
– BatchNorm2D(64)
– PReLU(64)

TF-Upsampler
• Block 0

– ConvTranspose2d(Cin, Cmid, k=(4,12), s=(2,10), p=(1,1)
– BatchNorm2D(Cmid)
– PReLU(Cmid)

• Block 1
– ConvTranspose2d(Cmid, 64, k=(4,12), s=(2,10), p=(1,1))
– BatchNorm2D(64)
– PReLU(64)

• Block 2
– Linear Interpolate(1.6, along time dim)

Magnitude Decoder
• (0) BasicBlock(c=64,k=(3,3),s=(1,1),p=(1,1))
• (1) BasicBlock(c=64,k=(3,3),s=(1,1),p=(1,1))
• (2) Upsample ConvBlock

– TransConv2d(64, 64, k=(1,3), s=(1,2), p=(0,1))
• (3) ConvBlock Decoder(outchannel=1)

– Conv2d(64, outchannel, k=(1,2), s=(1,1))
– InstanceNorm2d(outchannel)
– PReLU(outchannel)
– Conv2d(outchannel, outchannel, k=(1,1), s=(1,1))
– PReLU(outchannel)

Complex Decoder
• (0) BasicBlock(c=64,k=(3,3),s=(1,1),p=(1,1))
• (1) BasicBlock(c=64,k=(3,3),s=(1,1),p=(1,1))
• (2) Upsample ConvBlock
• (3) ConvBlock Decoder(outchannel=2)

Table 1. Simplified summary of the our modules.

Scale-invariant Signal-to-Noise Ratio (SI-SNR): Measures the quality of speech by comparing the signal power to the
noise power.

Short-Time Objective Intelligibility (STOI) [29]: Quantifies speech intelligibility on a scale from 0 to 1, with higher values



indicating better intelligibility.
Extended Short-Time Objective Intelligibility (ESTOI): Provides an enhanced measure of speech intelligibility by captur-

ing extended temporal dynamics.
Perceptual Evaluation of Speech Quality (PESQ) [25]: Assesses overall perceptual quality on a scale from 0.5 to 4.5,

where higher scores denote superior quality.
DNSMOS [24]: A neural network–based metric that estimates the perceptual quality of speech.
Word Error Rate (WER): Evaluates speech recognition accuracy by comparing the recognized transcript to the reference,

with lower percentages indicating better performance.
Mel Cepstral Distortion (MCD): Measures spectral distortion in the mel-cepstral domain between the enhanced and clean

speech.
CSIG: Estimates the degree of signal distortion.
CBAK: Evaluates the quality of the background noise.
COVL: Assesses the overall quality of the enhanced speech.
Note that, except for MCD and WER, all other metrics are interpreted such that higher values indicate better performance.

Improvement Metrics:
Improvement is computed as the difference between the metric value for the enhanced speech and that for the noisy speech.

This approach is adopted because some methods report these metric gains [19], while others are not open source—meaning
that our constructed noisy test set may not perfectly match the noisy speech used by those methods. Therefore, for a fair
comparison, we report relative improvements rather than absolute metric values:

PESQi: Improvement in PESQ.
MCDi: Improvement in MCD.
ESTOIi: Improvement in ESTOI.
STOIi: Improvement in STOI.
SI-SDRi: Improvement in Scale-Invariant SDR.

D. Dataset Details
We conducted our AVSE experiments on LRS3+DNS, GRID+CHiME3, TCD-TIMIT+NTCD-TIMIT, MEAD+DEMAND,
AVSpeech+DNS, (GRID, TCD-TIMIT) + PNL Nonspeech, and AVSEC3 datasets. In each dataset group, the first dataset
comprises clean audio-visual data, while the second dataset consists of noise samples collected from a variety of settings.
For all visual inputs, SeCMV processes a 112 × 112 grayscale image of the face following [32]. Meanwhile, SeCMPV and
SeCMPAV receive an 88 × 88 grayscale image of the mouth Region of Interest (ROI), in accordance with the configurations
of [18, 28, 36]. In the training phase, the 112 × 112 facial images and the 88x88 mouth ROI images are randomly cropped
from larger 128×128 facial images and 96×96 mouth images, respectively. In the testing phase, a center cropping technique
is employed.

LRS3 + DNS: LRS3 contains 438 hours of talking videos from TED and TEDX clips downloaded from YouTube. We
evaluate our method on the pretrain subset which contains 407 hours of video. We partitioned this subset into training,
validation, and testing sets with a ratio of 8:1:1. We follow Défossez et al. [4] to obtain the noise signal from the noise subset
of the DNS dataset. The subset contains approximately 181 hours of noise audio collected from a wide variety of events.
During training and evaluation, we utilized these samples as background noise to add noise to the clean speech and construct
synthetic noisy audio inputs.

GRID + CHiME3: GRID consists of 33 speakers. For our experiments, we follow the general setting Balasubramanian
et al. [1] to designate speakers s2 and s22 as the validation set, speakers s1 and s12 as the unseen unheard test set, and the
remaining 29 speakers as the training set. We sample noise from CHiME to corrupt the clean speech. The noise in CHiME
is categorized into 4 types: Cafe, Street, Bus, and Pedestrian. The CHiME dataset is divided into training, validation and
testing sets with an 8:1:1 ratio.

TCD-TIMIT + NTCD-TIMIT: TCD-TIMIT consists of AV speech data from 56 English speakers with an Irish accent.
Each utterance is approximately 5 seconds long and sampled at 16kHz. As recommended in Harte and Gillen [12], we split
the dataset into training, validation, and testing sets, with 39 speakers for training, 8 for validation, and 9 for testing. The
noisy speech input is derived from the NTCD-TIMIT dataset. This dataset is created by adding six different types of noise to
the original speech data from the TCD-TIMIT corpus. The noise types include Living Room, White, Cafe, Car, Bable, and
Street, and each noise type is associated with a specific SNR. Similar to the approach in Golmakani et al. [10], we selected 5
utterances per noise level and noise type for each test speaker to create a test set of 1350 utterances.



MEAD + DEMAND: The MEAD dataset consists of recordings from 46 participants, who uttered sentences expressing
eight different emotions at three intensity levels under seven camera viewpoints. This dataset is extensively employed in
research across various fields, including affective computing, human-computer interaction, and robust AVSE. Following
Kang et al. [13], choose videos that captured frontal views and the highest level (level 3) of emotion intensity for experiment.
For training, we utilized approximately 5 hours of videos from the MEAD dataset. Additionally, 0.7 hours were reserved
for validation, and another 0.7 hours were allocated for testing purposes. The DEMAND dataset comprises noise recordings
from multiple real-world environments and is extensively used in fields such as speech enhancement and speech recognition.

AVSpeech + DNS: AVSpeech is a large-scale audio-visual dataset designed for speech enhancement and related tasks.
Each clip lasts between 3 and 10 seconds and features a single visible speaker whose voice is captured in the audio track.
In total, the dataset contains roughly 4700 hours of video segments, sourced from about 290,000 YouTube videos, and
includes nearly 150,000 unique speakers. This extensive diversity in speakers, languages, and facial poses makes AVSpeech
an invaluable resource for advancing audio-visual processing research.

(GRID, TCD-TIMIT) + PNL Nonspeech: PNL Nonspeech is a collection containing 100 types of non-speech noise
recordings. Following EANet [37], clean speeches from GRID and TCD-TIMIT are divided into 8:1:1 for training, validating,
and testing. During training and validation, noises are randomly selected from the PNL Nonspeech dataset. While testing,
noises from NoiseX-92 [31] are used to synthesize The noisy input.

AVSEC3: The 3rd Audio-Visual Speech Enhancement Challenge (AVSEC3) provide a benchmark for the evaluation of
AVSE systems. The paired clean data are obtained from the LRS3 dataset. There are two types of interferers: 1) Speech:
competing speakers are derived from the LRS3 dataset. 2) Noise: the noise dataset is built based on CEC1 [11], DEMAND,
and DNS datasets.

E. More Comparison Results
E.a. Comparison Results on GRID + CHiME3
We compare the proposed CogCM with the SOTA AVSE approaches on GRID datasets. Following Wang et al. [33], we
utilize the noises from the CHiME3 dataset to synthesize the noisy input audios and perform an evaluation with the test
signal-to-noise ratio (SNR) levels of both -5dB and 0dB. As shown in Tabel 2, CogCM achieves the best performance in both
the PESQ improvement (PESQi) and STOI improvement (STOIi) metrics with different test SNR levels.

Method
-5dB 0dB

STOIi(%) PESQi STOIi(%) PESQi

L2L [5] 11.14 0.54 8.86 0.62
VSE [6] - 0.45 - 0.60
OVA [33] - 0.40 - 0.66
VSET [23] - 0.50 - 0.75
MHCA-AVCRN [35] 13.51 0.76 11.25 0.88
M3Net [34] 13.42 0.75 11.31 0.89
DualAVSE [32] 15.79 0.76 13.56 0.92
CogCM (Ours) 26.25 1.01 20.50 1.21

Table 2. Comparison results on GRID + CHiME3 datasets. ‘-’ denotes that the results are not reported in the original paper.

E.b. Comparison Results on TCD-TIMIT + NTCD-TIMIT
We further evaluate our CogCM model on the TCD-TIMIT dataset, comparing it with SOTA AVSE methods. The reporting
metrics in Golmakani et al. [10] contains SI-SDR [14], PESQ, and STOI. We report the score improvement as a means of
comparison. As illustrated in Table 3, the proposed CogCM achieves the best performance across all metrics at all SNR
levels.



Method
SI-SDRi (dB)↑ PESQi↑ STOIi↑

-5dB 0dB 5dB 10dB 15dB -5dB 0dB 5dB 10dB 15dB -5dB 0dB 5dB 10dB 15dB

A-VAE [26] 4.34 5.12 5.93 6.07 5.76 0.16 0.19 0.20 0.21 0.05 0.02 0.02 0.04 0.04 0.04
AV-VAE [26] 6.15 6.86 7.38 7.22 6.52 0.24 0.27 0.29 0.28 0.08 0.02 0.03 0.04 0.05 0.04
A-DKF [10] 5.78 6.80 7.67 8.35 7.71 0.27 0.32 0.36 0.38 0.18 0.02 0.05 0.07 0.09 0.08
AV-DKF [10] 9.02 9.50 10.10 9.62 8.56 0.43 0.48 0.49 0.43 0.20 0.05 0.08 0.09 0.10 0.08
DualAVSE [32] 18.50 17.18 15.35 12.93 10.71 0.45 0.67 0.88 1.06 1.16 0.15 0.15 0.13 0.10 0.06
CogCM (Ours) 20.89 19.95 18.39 16.27 13.86 1.21 1.50 1.77 1.97 2.02 0.27 0.26 0.22 0.16 0.11

Table 3. Comparison results on TCD-TIMIT + NTCD-TIMIT datasets.

E.c. Comparison Results on MEAD + Demand
We conduct a comparison between CogCM and the AVSE methods on the MEAD dataset. The results presented in Table 4
demonstrate that our proposed CogCM model outperforms all other methods in terms of all evaluated metrics across various
SNR conditions.

Method
SI-SDRi (dB)↑ PESQi↑ STOIi↑

-10dB -5dB 0dB 5dB 10dB -10dB -5dB 0dB 5dB 10dB -10dB -5dB 0dB 5dB 10dB

A-VAE [15] 8.91 10.33 10.52 9.81 8.14 0.03 0.27 0.35 0.38 0.31 0.01 0.03 0.04 0.01 -0.01
AV-CVAE [27] 8.96 10.58 10.45 9.46 7.65 0.12 0.32 0.39 0.37 0.31 0.02 0.04 0.03 0.01 -0.02
AV-CVAE-WithHM [13] 8.08 10.02 10.12 9.21 7.70 0.12 0.29 0.32 0.30 0.28 0.01 0.02 0.01 -0.01 -0.03
AV-CVAE-RFF [13] 9.62 10.72 10.68 9.70 8.00 0.22 0.45 0.46 0.43 0.35 0.03 0.05 0.05 0.01 -0.01
DualAVSE [32] 16.06 15.21 14.09 12.98 11.27 0.35 0.54 0.74 0.92 1.01 0.10 0.10 0.08 0.05 0.03
CogCM (Ours) 22.02 21.07 19.22 16.90 14.13 1.26 1.57 1.68 1.60 1.33 0.17 0.14 0.09 0.06 0.03

Table 4. Comparison resutls on MEAD + DEMAND datasets.

E.d. Comparison Results on AVSpeech + DNS
Following LA-VocE [19], we evaluate our method on the AVSpeech + DNS dataset under various noise conditions and
compare it with highly influential methods such as LA-VocE and RT-LA-VocE. Due to the inconsistent quality of AVSpeech
data and to reduce training costs, we employed DNSMOS scoring to assess speech quality and selected a subset of high-
quality (i.e., low-background-noise) samples for our training and validation sets. For testing, in line with LA-VocE, we
randomly selected 1% (approximately 1500 clips) from the test set. It is noteworthy that our training set is smaller than that
used by LA-VocE.

Following LA-VocE, we conducted comparative experiments under three noise conditions. In Condition 1, there is one
background noise at 0 dB SNR and one interfering speaker at 0 dB SIR. Condition 2 comprises three background noises at
-5 dB SNR and two interfering speakers at -5 dB SIR. Finally, Condition 3 includes five background noises at -10 dB SNR
and three interfering speakers at -10 dB SIR.

Table 5 presents a detailed comparison of multiple methods using several evaluation metrics, including MCDi, PESQi,
STOIi, and ESTOIi. Due to the failure to install ViSQOL, we did not report the ViSQOL results. The results demonstrate that
our proposed CogCM consistently outperforms competing approaches under challenging acoustic scenarios, highlighting its
robustness and effectiveness in enhancing speech quality.



Method Input MCDi↓ PESQi↑ STOIi↑ ESTOIi↑

Noise condition 1
(1 background noise at 0 dB SNR + 1 interfering speaker at 0 dB SIR)
GCRN [30] A 0.41 0.044 -0.052 -0.038
AV-GCRN [30] AV -1.193 0.394 0.220 0.235
AV-Demucs [4] AV -5.581 0.738 0.270 0.298
MuSE [20] AV -5.528 0.787 0.276 0.299
VisualVoice [7] AV -3.781 0.606 0.249 0.270
LA-VocE [19] AV -6.653 0.931 0.294 0.333
RT-LA-VocE [3] AV -6.157 0.653 0.255 0.282
CogCM (Ours) AV -13.155 1.466 0.307 0.445

Noise condition 2
(3 background noises at -5 dB SNR + 2 interfering speakers at -5 dB SIR)
GCRN [30] A 0.416 -0.010 -0.015 -0.015
AV-GCRN [30] AV -1.354 0.096 0.234 0.214
AV-Demucs [4] AV -5.548 0.274 0.308 0.300
MuSE [20] AV -5.314 0.297 0.308 0.289
VisualVoice [7] AV -3.388 0.164 0.253 0.237
LA-VocE [19] AV -6.863 0.511 0.379 0.397
RT-LA-VocE [3] AV -6.313 0.297 0.315 0.321
CogCM (Ours) AV -15.391 1.056 0.343 0.446

Noise condition 3
(5 background noises at -10 dB SNR + 3 interfering speakers at -10 dB SIR)
GCRN [30] A -0.015 0.045 -0.020 -0.005
AV-GCRN [30] AV -1.263 0.043 0.171 0.139
AV-Demucs [4] AV -5.170 0.013 0.262 0.230
MuSE [20] AV -4.418 0.011 0.231 0.218
VisualVoice [7] AV -3.125 0.045 0.181 0.166
LA-VocE [19] AV -6.170 0.159 0.371 0.206
RT-LA-VocE [3] AV -5.671 0.039 0.287 0.272
CogCM (Ours) AV -17.705 0.629 0.342 0.373

Table 5. Comparison results on AVSpeech + DNS datasets under different noise conditions.

E.e. Comparison Results on (GRID, TCD-TIMIT) + PNL Nonspeech
We further evaluate our method on the (GRID, TCD-TIMIT) + PNL Nonspeech dataset, which combines clean audio-visual
pairs with PNL Nonspeech noise. Table 6 presents performance metrics—namely PESQi and STOIi—across a wide range
of SNR levels. Our proposed CogCM achieves the best average performance, demonstrating its effectiveness in leveraging
visual and semantic cues to enhance speech quality in diverse noisy conditions.



Method
SNR

AVG
-12dB -9dB -6dB -3dB 0dB 6dB 9dB 12dB

PESQi↑

DCCRN+ [17] 0.43 0.42 0.39 0.33 0.22 0.44 0.33 0.46 0.38

PerceptNet+ [8] 0.46 0.47 0.34 0.61 0.49 0.29 0.24 0.35 0.41

DNSIP [16] 0.11 0.06 0.06 0.01 -0.03 0.12 0.54 0.78 0.22

CASE [9] 0.57 0.53 0.47 0.52 0.81 0.57 0.60 0.48 0.57

SE+AVVAD+SI [2] 0.75 0.72 0.84 0.87 0.83 0.66 0.64 0.59 0.74

AVMCNN [2] 0.86 0.87 0.87 0.86 0.84 0.75 0.76 0.70 0.81

EANet [37] 1.14 1.21 1.21 1.24 1.14 1.01 0.96 0.88 1.10

CogCM (Ours) 1.15 1.23 1.34 1.38 1.42 1.43 1.40 1.31 1.33

STOIi↑

DCCRN+ [17] 0.11 0.10 0.07 0.05 0.09 0.04 0.07 0.07 0.08

PerceptNet+ [8] 0.15 0.15 0.14 0.13 0.14 0.09 0.08 0.07 0.12

DNSIP [16] 0.11 0.11 0.09 0.07 0.12 0.09 0.09 0.07 0.09

CASE [9] 0.12 0.12 0.11 0.08 0.10 0.05 0.06 0.04 0.09

SE+AVVAD+SI [2] 0.13 0.12 0.11 0.10 0.12 0.08 0.07 0.05 0.10

AVMCNN [2] 0.11 0.11 0.10 0.11 0.13 0.09 0.09 0.07 0.10

EANet [37] 0.20 0.18 0.16 0.14 0.14 0.10 0.09 0.08 0.14

CogCM (Ours) 0.26 0.25 0.24 0.21 0.19 0.13 0.11 0.09 0.18

Table 6. Comparison resutls on (GRID, TCD-TIMIT)+PNL Nonspeech datasets. STOIi and PESQi of various methods under different
SNR conditions.

F. More Ablation Studies
F.a. Structure of SeCM
We further explore the impact of employing different pre-trained models as SeCM. Specifically, we substitute SeCMPAV in
CogCM with various pre-trained models known for their strong performance in AVSR tasks, including AVHuBERT, VATLm,
and Auto-AVSR. Given that these models were pre-trained exclusively on clean audio-visual paired data, they have learned
the shared information from audio-visual data. While the audio inputs of AVSE are interfered by noise, the shared information
would be destroyed thus resulting in performance degradation. To ensure a fair comparison, we also investigate a modified
variant of SeCMPAV, which similarly uses only the visual modality.

The experimental results, as shown in Table 7, reveal that (1) all pre-trained models used as SeCM significantly improve
enhancement performance, validating the importance of semantic contextual information in AVSE; (2) robust AVHuBERT
(SeCMPAV) shows marked superiority over other pre-trained models, irrespective of whether the input is visual-only or audio-
visual. This advantage is attributed to the inclusion of noise during the training process, which enables Robust AVHuBERT
to learn more robust audio-visual representations under noisy conditions.

F.b. Different-Layer Features of AVHuBERT
To conduct a more detailed assessment of how various degrees of semantic information affect the AVSE task, we utilize
features from different encoder layers of robust AV-HuBERT as examples for evaluation. As indicated in Table 8, features
from mid-to-high layers generally outperform those from lower layers. Typically, performance improves with higher-layer
levels. The results supports again our motivation of introducing semantic context for AVSE because of the consensus that
features extracted from higher layers are more closely associated with semantic-level cognition. Nevertheless, there are also
exceptions; for example, under -5dB and 0dB SNR ratios, features from the 12th layer yield a higher SDR than those from the
24th layer. Given that different metrics assess different aspects of speech quality, these findings reveal that semantic contexts
from different layers prioritize distinct aspects of speech. This suggests that integrating features across various layers could



Method Input
-15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

SeCMV

VSR V 5.814 1.988 0.782 8.986 2.321 0.847 11.768 2.673 0.892 14.354 3.031 0.925

SeCMPV

AVHuBERT V 6.877 2.233 0.836 9.885 2.557 0.879 12.504 2.885 0.912 14.842 3.208 0.936
VATLM V 6.878 2.245 0.836 10.074 2.543 0.879 12.725 2.858 0.911 15.030 3.179 0.935
VATLM AV 6.305 2.084 0.799 9.799 2.466 0.868 12.561 2.831 0.909 15.008 3.170 0.935

Auto-AVSR V 6.384 2.126 0.813 9.588 2.455 0.866 12.299 2.798 0.904 14.692 3.131 0.930

SeCMPAV

AVHuBERT V 6.789 2.231 0.836 9.869 2.543 0.878 12.511 2.869 0.911 14.916 3.196 0.935
AVHuBERT AV 7.284 2.269 0.842 10.385 2.608 0.886 12.998 2.922 0.917 15.339 3.235 0.939

Table 7. Comparisons of different pre-trained models for SeCM. In our evaluation, “V” indicates that SeCM receives visual inputs only,
while “AV” indicates audio-visual inputs. Models under SeCMPAV are pre-trained on paired video and noisy audio, whereas those under
SeCMPV are pre-trained on paired video and clean audio.

potentially enhance the overall performance for AVSE.

Layer
-15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

24th Layer 7.284 2.269 0.842 10.385 2.608 0.886 12.998 2.922 0.917 15.339 3.235 0.939
23rd Layer 7.257 2.246 0.840 10.339 2.589 0.885 12.838 2.897 0.916 15.003 3.207 0.938
12th Layer 7.140 2.164 0.826 10.351 2.511 0.878 13.049 2.858 0.913 15.439 3.189 0.937
1st Layer 5.814 2.096 0.805 9.475 2.405 0.863 12.377 2.751 0.903 14.858 3.085 0.930
w/o SeC 5.171 1.904 0.752 8.509 2.241 0.831 11.393 2.616 0.884 14.005 2.992 0.921

Table 8. Evaluation of semantic contexts extracted from different encoder layers of robust AV-HuBERT. ‘w/o SeC’ denotes that no semantic
contexts are utilized (AOSE Baseline).

F.c. Structure of SSGM
As illustrated in Figure 3 in the main text, the integrated output includes the residual connection for semantic context, denoted
as E′

se. To further explore the role of semantic context in the fusion process, we developed a variant of SSGM that omits
E′

se, simulating conditions devoid of semantic context. This variant differs from the AOSE Baseline presented in Table 8 in
that it still employs the AVSE approach but excludes the direct influence of semantic context. Table 9 demonstrates that the
residual connections consistently enhance performance. This indicates that semantic context plays a role not only during the
initial stages of fusion at shallower network layers but also continues to guide performance improvements in deeper network
layers where contextual information is fully integrated.

E′
se

-15dB -10dB -5dB 0dB
SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

✓ 7.284 2.269 0.842 10.385 2.608 0.886 12.998 2.922 0.917 15.339 3.235 0.939
✗ 7.033 2.220 0.835 10.036 2.560 0.880 12.697 2.900 0.914 14.947 3.203 0.936

Table 9. Comparison results of different SSGM configurations, E′
se indicates whether to add semantic context residual connections



G. Complete Ablation Study Results of Main Text
Due to space limitations in the main text, we were unable to present the full range of SNR results for our ablation experiments. Here, we
provide the complete ablation study results covering all SNR values (Table 10- 13). Detailed analysis of these results can be found in the
main text.

SeC
-15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

w/o SeC 5.171 1.904 0.752 8.509 2.241 0.831 11.393 2.616 0.884 14.005 2.992 0.921
SeCMV 5.414 1.973 0.779 8.637 2.307 0.845 11.526 2.663 0.891 14.210 3.022 0.924

SeCMPV 6.112 2.183 0.826 9.344 2.503 0.872 12.178 2.829 0.907 14.725 3.143 0.932
SeCMPAV 6.680 2.214 0.833 9.838 2.548 0.879 12.588 2.865 0.912 15.054 3.174 0.935

Table 10. Evaluation of SeC. ‘w/o SeC’ denotes that no semantic contexts are utilized (AOSE Baseline).

SiC
-15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

Conformer 4.311 1.780 0.730 7.797 2.138 0.817 10.742 2.496 0.875 13.467 2.875 0.914
SiCM (ours) 5.171 1.904 0.752 8.509 2.241 0.831 11.393 2.616 0.884 14.005 2.992 0.921

(a) Evaluation of SiCM and Conformer Modules in AOSE.

SiC
-15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

Conformer 4.656 1.845 0.755 7.952 2.161 0.829 10.831 2.521 0.88 13.492 2.897 0.917
SiCM (ours) 5.414 1.973 0.779 8.637 2.307 0.845 11.526 2.663 0.891 14.210 3.022 0.924

(b) Evaluation of SiCM and Conformer Modules in AVSE.

Table 11. Evaluation of SiC. For the experiments in Table(b), the visual inputs are processed by SeCMV . The context fusion strategy is a
simple additional fusion.

Fusion Strategies
-15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

Add (naive) 5.414 1.973 0.779 8.637 2.307 0.845 11.526 2.663 0.891 14.210 3.022 0.924
SSGM (ours) 5.814 1.988 0.782 8.986 2.321 0.847 11.768 2.673 0.892 14.354 3.031 0.925

(a) Evaluation of different contextual information fusion strategies, with SeCMV to obtain semantic context.

Fusion Strategies
-15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

Add (naive) 6.680 2.214 0.833 9.838 2.548 0.879 12.588 2.865 0.912 15.012 3.189 0.937
SSGM (ours) 7.284 2.269 0.842 10.385 2.608 0.886 12.998 2.922 0.917 15.339 3.235 0.939

(b) Evaluation of different contextual information fusion strategies, with SeCMPAV to obtain semantic context.

Table 12. Evaluation of SSGM.



US FM
-15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

✓ ✓ 7.284 2.269 0.842 10.385 2.608 0.886 12.998 2.922 0.917 15.339 3.235 0.939
✗ ✓ 6.992 2.252 0.839 10.098 2.593 0.884 12.737 2.918 0.915 15.064 3.229 0.937
✓ ✗ 7.025 2.214 0.835 10.075 2.560 0.882 12.681 2.876 0.914 15.012 3.189 0.937
✗ ✗ 6.803 2.199 0.831 9.866 2.535 0.879 12.559 2.869 0.913 14.950 3.190 0.936

Table 13. Ablation study of visual frequency for AVSE. US indicates frequency upsample operation; FM indicates frequency modeling
module in SSGM.

H. Results on WER and DNSMOS
We further evaluated the performance of our enhanced speech using the pre-trained Whisper [21] model for speech recognition and DNS-
MOS as a subjective quality metric. As shown in Table 14, our proposed method significantly improves both word error rate (WER) and
DNSMOS compared to the noisy input across various SNR conditions. Specifically, the enhanced speech achieves a lower WER and a
higher DNSMOS score, demonstrating substantial improvements in both intelligibility and perceptual quality.

SNR
-15 dB -10 dB -5 dB 0 dB

WER(%)↓ DNSMOS↑ WER(%)↓ DNSMOS↑ WER(%)↓ DNSMOS↑ WER(%)↓ DNSMOS↑

Noisy > 100 2.459 > 100 2.470 > 100 2.497 > 100 2.527
CogCM(Ours) 43.2 2.828 40.9 2.863 35.3 2.877 57.7 2.871

Table 14. Comparison of WER and DNSMOS on the LRS3 + DNS dataset. Lower WER and higher DNSMOS values indicate better
performance.

I. Visualization of spectrograms
Figure 2 displays the spectrograms of three samples, arranged from top to bottom as follows: noisy speech, clean speech, DualAVSE
enhancement results, and our CogCM enhancement results. The figure clearly illustrates that our CogCM enhancement results yield a
spectrum with clearer and richer details. Particularly in extreme noise conditions, as seen in sample 3, the spectrogram enhanced by
DualAVSE appears very blurry, while the CogCM enhancement results are clearer.

J. Notation
In this section, we summarize the key symbols and notations used throughout this paper. Table 15 provides an overview of each symbol,
its corresponding dimensions, and a brief description of its role in our model.
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Figure 2. Visualization of the spectrum for samples.

Symbol Dimension Description

x RTa Noisy speech waveform of length Ta

s RTa Clean (target) speech waveform
V RH×W×Tv Video frame sequence with height H , width W , and Tv frames
X R2×Tx×Fx Complex spectrogram of the noisy speech (e.g., real+imaginary)
X ′ R3×Tx×Fx Input spectral features, consisting of magnitude, real, and imaginary parts
S R2×Tx×Fx Clean speech spectrogram (real+imaginary)
Xm, Xp, Xr, Xi R1×Tx×Fx Magnitude, phase, real, and imaginary components of the noisy spectrogram
Sm, Sr, Si R1×Tx×Fx Magnitude, real, and imaginary components of the clean spectrogram
Ea RC×Tx×F ′

x High-dimensional audio embeddings from the Audio Encoder
Ese RCse×Tse Semantic context embeddings extracted by SeCM
E′

se RC×Tx×F ′
x Semantic context embeddings after TF-Upsampler

H1, H2 RC×Tx/RC×F ′
x Input features of CSBlock

H ′
1, H

′
2 RC×Tx/RC×F ′

x Output features of CSBlock
H ′′

1 , H
′′
2 RC×Tx/RC×F ′

x Signal context features from H ′
1, H

′
2

W RC×Tx/RC×F ′
x Weights vector in CGBlock

Ŝm R1×Tx×Fx Predicted magnitude spectrogram from the Magnitude Decoder
Ŝ′
r, Ŝ

′
i R1×Tx×Fx Predicted real and imaginary components from the Complex Decoder

Ŝr, Ŝi R1×Tx×Fx Predicted real and imaginary components of the enhanced spectrogram
ŝ RTa Final enhanced speech waveform after ISTFT

Table 15. Summary of Notations
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