
Continuous-Time Human Motion Field from Event Cameras

Supplementary Material

8. Implementation Details
8.1. Training Details
Multi-state Training. We deploy a multi-stage training
strategy, as briefly described in Sec. 4.5. First, we train
the Event Human Motion Predictor (E-HMP) described
in Sec. 4.2 for 10 epochs. During this training, we use
a dummy translation prediction network that directly re-
gresses the poses as in [74], which is then later removed. In
parallel, we train the Glboal Motion Predictor (GMP) de-
scribed in Sec. 4.3 for 5 epochs. At this point, the GMP
network is slightly overfitted to the training data. We then
freeze the GMP and merge with the E-HMP to help conver-
gence, and then unfreeze it after 1 epoch and decrease the
learning rate to 1e-5 to jointly fine-tune the two networks.
Empirically, we find that this iterative training approach
helps convergence for both the GMP and the E-HMP. For
each component of the multi-stage training, we use a start
learning rate of 1e-3 and then decay it to 1e-4 after one
epoch to help stabilize training. We use batch size of 16
for all networks.

Hyperparameters. In all experiments, we set ωori =

10, ωt = 10, ω3D = 20, ω2D = 20, ωflow = 0.1 and
ωc = 0.1. The starting learning rate is 1e-3 for all networks
trained from scratch and decayed by 10 after the first epoch.
We use a learning rate of 1e-5 for fine-tuning the GMP net-
work. We use Adam as optimizer for all experiments.

Global Motion Field versus Global Motion Predictor
Here, we disambiguate between the two types of “global”
motions mentioned in the main paper. The global motion
field, which is decoded from the latent code zg , represents
the relative rotation of the root joint. These rotations are
important to convert joint positions into the root-adjusted
global pose, which are needed for the Global Motion Pre-
dictor. On the other hand, the Global Motion Predictor
(GMP), predicts the root velocity based on the input joint
positions, joint velocities, joint orientations, and rotational
velocities. The GMP does not use zg directly. Instead, it
uses pelvis-centered local poses (decoded from zl) rotated
by each root orientation (decoded from zg) to compute the
translational velocity estimate.

9. Architecture
9.1. Event Human Motion Predictor (E-HMP)
First, we use a pre-trained ResNet50 image encoder pre-
trained on ImageNet to compute features from the event
volumes. The initial convolutional layers with three input
channels are replaced with ones having eight input chan-

nels. The output features at different steps are processed
with a Gated Recurrent Unit network that recurrently up-
dates a hidden state. In the last step tT , we use a linear layer
to project the hidden state to the a vector of size 1024+256,
which is then divided into the global code zg and zl. The
GRU has one layer with 2048 hidden size with no dropout
and with one direction.

Multi-layer Preceptron Motion Decoder Our continu-
ous decoding rely on an MLP that takes timestamps as in-
put and outputs the pose parameters. We used an MLP with
11 linear layers with ReLU nonlinearities and skip connec-
tions. The input timestamps are mapped to positional en-
coding and concatenated with the latent codes, as input to
the MLP.

9.2. Global Motion Predictor (GMP)
Following [2], we use Skeleton Convolutions to aggregate
features on the graph defined by the SMPL skeleton. The
local poses parameters pass through 3 layers of convolution
layers, followed by four more 1D convolution layers and
average pooling layers to obtain the final translational ve-
locities. Each pose predicts on velocity vector. No temporal
blending is performed at this step.

10. Additional Human Mesh Prediction Re-
sults

In Fig. 10, we show the results of human predictions at five
different frame rates. Due to the continuous nature of our
Event Human Motion Predictor (E-HMP), the poses can be
queried at any timestamp during the event duration. We
only show 120 FPS here because it is difficult to visualize
a higher frame rate in a 2D image. Animated results can be
found in the supplementary video. Each row corresponds
to a 1 second sequence of human motion. We overlaid the
predictions at different timestamps onto the same image. It
can be observed that our network allows 120 FPS decod-
ing in parallel, which produces smooth and continuous-time
movements. We note that the continuous human motion
field is predicted at once from the events, and sampling
poses at different timestamps requires only inputting arbi-
trary timestamps to the lightweight MLP.

10.1. Smoothness
Temporal Smoothness Evaluation We provide additional
visualization of improved temporal smoothness than per-
frame prediction in Fig. 9. By decoding the entire sequence
at once, our model leverages temporal smoothness to pro-
duce smooth and coherent predictions, particularly for mo-



Figure 8. Left: Accurate tracking under smooth motion with
dense event observations. Middle: Sudden acceleration causes
the model to lose track of the head. Right: Failure in regions with
sparse events, such as the static legs. Faces masked for anonymity.

HMR2.0

Ours

GT

t = 0.067s t = 0.133s t = 0.200 t = 0.267s t = 0.333s

Inconsistent

smooth

Figure 9. Temporal smoothness. Comparison between our model
and HMR2.0 on the Starjump sequence. HMR2.0 predicts tempo-
rally inconsistent meshes due to single frame prediction, while our
model maintains smooth motion.

tions such as arm folding. In contrast, HMR 2.0 tends to
rely on frame-wise predictions, making it more prone to
local errors and leading to reduced temporal consistency
across the sequence.

10.2. Failure Cases
In Fig. 8, we illustrate several common challenges in event-
based motion estimation arising from sensitivity to contrast
thresholds. When the contrast between the foreground and
background is low, the resulting events contain insufficient
information for the network to reliably track the human sub-
ject. Conversely, increasing the sensitivity leads to the gen-
eration of extraneous noisy events, which can degrade per-
formance. We leave the resolution of this trade-off to future
work.

11. Beam-splitter Event Agile Human Motion
Dataset (BEAHM)

11.1. Collection setup
BEAHM uses four high-speed Flir RGB cameras (1920 →
1080) to collect images for annotations, will be referred to
as GT cameras. And a beam splitter with a Flir RGB camera
(2448 → 2048) and a Prophesee Event camera (640 → 480)
to capture paired event data and images. The beam splitter
and trigger box design are shown in Fig. 13. The setup for

data collection is shown in Fig. 14.
Before data collection, all cameras, including the event

camera, are calibrated using Kalibr [12]. The calibration
procedure for the event camera follows the methodology
in [43]. The re-projection error for each camera is sub-
pixel. The calibration result, raw data, ground-truth labels
and data collection software will be publicly released as part
of BEAHM.

During data collection, ground truth cameras ran at 125
Hz with an exposure time set to 5 ms to minimize motion
blur. The RGB camera within the beam splitter is triggered
at 15.625 Hz (division of 8) with an exposure time of 50
ms to produce intentionally blurry frames for comparison.
All RGB cameras are set to autogain. The event camera
receives the same trigger rate as the ground-truth cameras.
We evaluated the trigger drift of our 125 Hz synchroniza-
tion signal. As shown in Fig. 15, the trigger interval has a
minimal drift of on average 0.01938 ‰.

For visualization, we plot the speed distribution of non-
static joints in BEAHM and MMHPSD dataset. As shown
in Fig. 12, BEAHM has a larger proportion of high-speed
joints (> 3 m/s), featuring fast and diverse motions for train-
ing and evaluation.

Using four views from different directions, data in
BEAHM is annotated with Easymocap [1], which employs
2D joint detection and triangulation to determine 3D joint
locations. Examples of the annotation results are shown in
Fig. 11. In the figure, the annotated SMPL model is overlaid
on the original images to visually assess annotation quality.

In our collections 9 out of 160 sequences are discarded
due to inaccurate annotations, primarily caused by occlu-
sions of certain parts of the human body.

11.2. Sequences
In total, BEAHM consists of 160 sequences with 40 differ-
ent motions and 200 thousand frames of SMPL annotations.
The motions are categorized by prediction difficulty into 3
increasing levels, varying from basic motion such as arm
abduction to extreme sports such as Taekwondo, Volleyball
and Tennis. The details of captured motions are described
in Tab. 4. We present 5 example sequences: Left arm wave,
Bicep curl, Left lunge, Lean left, Volleyball of our BEAHM
dataset in Fig. 11.

12. Baseline Methods
12.1. DHP19
Since the annotation method differs between BEAHM and
DHP19 data, we re-trained the DHP19 network on our
dataset using 24 joints derived from the annotated SMPL
model. To generate ground truth for the DHP19 network,
SMPL annotations are converted and projected into 24 2D
joint positions, which are then rearranged into a heatmap



120 FPS 60 FPS 30 FPS 15 FPS 7.5 FPS

Figure 10. Predicted Human Motion Sequence. We show the sequences of human motion in each image by overlaying predictions at
different timestamps. Past predictions are rendered with high transparency.



(a) (b) (c) (d) (e) (f)

Figure 11. We present six example sequences from BEAHM. Each sequence, from left to right, includes: (a-d) Four multi-camera images
with SMPL annotation overlaid via EasyMocap [1]. (e) The estimated mesh model superimposed on the beam splitter RGB camera. (f)
Events displayed on the beam splitter RGB camera.



Table 4. BEAHM dataset details. BEAHM consists of 40 different human motions that are categorized into Basic, Medium and Extreme
levels. Basic activities include motion of arms, legs, main body and head. Medium activities are common actions involving more than 2
parts of the human body. Extreme activities are competitive sports with fast motions

Category Actions
Basic

Arms Left arm upward Right arm upward Bicep curl Left arm wave Right arm wave
Left arm circle Right arm circle Left punch Right punch Punch
Left arm raise Right arm raise Left arm outward Right arm outward Outward

Legs Left knee lift Right knee lift Left hop Right hop Left kick
Right kick Left lunge Right lunge

Body Lean left Lean right Rotate torso Rotate head Nod

Medium
Common Walk Jog Jump up-down Jump forward-back Jump sideway
Activities Starjump Squat

Extreme
Sports Taekwondo Tennis Volleyball Gymnastics Shot put

Figure 12. Speed distribution of joints in MMHPSD and BEAHM.

Event Cam

RGB Cam

(a) (b)

Figure 13. Beam splitter and trigger box design (a) Beam split-
ter with an event camera and a paired RGB camera. (b) Trigger
box design with adjustable time interval.

with 24 channels, each representing the probability of one
joint. The output dimension of the DHP19 network is ad-
justed to 24 accordingly. For smoothing the heatmaps, we
use a 15-pixel Gaussian blur kernel from Torchvision with

sigma of 2.6 pixels for computational efficiency. The whole
implementation is built using PyTorch and additional de-
tails such as data format, optimizer, and learning rate decay
strategy follow the setup of the original paper.

12.2. EventCap
EventCap [66] is a pioneering approach for capturing high-
speed human motions using a single event camera, achieve-
ing human pose estimation at 1000 fps. We followed the
steps outlined in the original EventCap [66] paper with
modifications to adapt the algorithm to both the MMHPSD
dataset and our BEAHM dataset. We adapted the Event-
Cap baseline to use SMPL models instead of the proprietary
scanned textured human models in the original implementa-
tion. We initialized SMPL parameters using HMR 2.0 out-
puts through slerp interpolation.

The entire EventCap [66] pipeline is divided into two
main components: batch optimization and per-frame event
refinement. In the batch optimization stage, we included
four loss terms: correspondence loss, 2D loss, 3D loss, and
temporal loss. To obtain feature tracks to compute the cor-
respondence loss, we experimented with both event feature
tracking [15] and image-based tracking [38]. We found that
image feature tracking provided more stable performance.
To give EventCap a fair shot, we reported the performance
of the better model using the image-based features. In the
temporal loss term, we only included joints in the energy
term if they were close to events, thereby introducing a tem-
poral stabilization constraint for non-moving body parts.
We empirically chose the weight of each loss term for both
the MMHPSD dataset and our BEAHM dataset. The cho-
sen weights are ω3D = 10, ω2D = 10, ωtemp = 0.01,



GT RGB cam1

GT RGB cam2 GT RGB cam3

GT RGB cam4

Beam Splitter

Acting zone

Collection Room

Figure 14. BEAHM collection setup. 4 high speed cameras for
gt are placed at 4 corners and a beam splitter is placed at one side
to capture human in the middle of the room. The space of acting
zone is 1.5m → 2m.

Figure 15. Hardware synchronization signal evaluation We
evaluated the bias drift of triggers by recording the timestamp of
the trigger subtracted by a standard 125 Hz signal, the total drift
over 8.6 s is 0.169 ms.

ωcor = 2.5. The event refinement implementation adhered
largely to the original paper[66]. ωdist is used to determine
the relative scale between spatial distance and temporal dis-
tance when finding the closest event to a human contour
pixel. We chose ωdist = 0.5 for both datasets. The entire

EventCap pipeline was implemented in PyTorch with SGD
as the optimizer. We ran 10,000 iterations for batch opti-
mization and 2,000 iterations for event refinement.


	. Introduction
	. Related Work
	. Preliminaries
	. Method
	. Human Motion Field
	. Event Human Motion Predictor
	. Global Motion Estimation 
	. Human Mesh Event Contrast Maximization
	. Training

	. Beam-splitter Event Agile Human Motion Dataset (BEAHM)
	. Experiments
	. Datasets and Metrics
	. Baseline Methods
	. Comparisons
	. Ablation
	. Variable Frame Rate Prediction
	. Computational Speed

	. Conclusion and Discussion
	. Implementation Details
	. Training Details

	. Architecture
	. Event Human Motion Predictor (E-HMP)
	. Global Motion Predictor (GMP)

	. Additional Human Mesh Prediction Results
	. Smoothness
	. Failure Cases

	. Beam-splitter Event Agile Human Motion Dataset (BEAHM)
	. Collection setup
	. Sequences

	. Baseline Methods
	. DHP19
	. EventCap


