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Supplementary Material

A. Overview

This supplementary material consists of:
e Invertible Neural Network Details

* Supplementary on Comparison

* Supplementary on Ablation Study

* Visualization for Real-IAD

* Limitations

B. Invertible Neural Network Details
B.1. The Structure of Invertible Mapping Unit

According to the methodology in the main text, our invert-
ible neural network (INN) F consists of a series of block
F,., where the output of each block is normalized by ‘Act-
Norm’ [3] to maintain invertibility of INN and stable train-
ing dynamics. Mathematically,

F=FroFp_y---ol1, ey

where R is the number of invertible blocks (see Fig. 1). Fur-
thermore, each layer F). also consists of multiple invertible
mapping unit f, i.e.,

F=frxofx_a0o-fi. 2

The concrete structure of fj is shown in Fig. 1. Each fy, is
based on invertible mapping G, i.e.,

o= (M58) ®

Following INN-based work [1], we adopt i-DenseNet [11]
to parametrize G. Based on G and Eq. (3), we can model
fx, which is named as ‘Induced Norm Linear’. To en-
sure that each fy, is 1-Lipchitz, we select activation function
‘Pila’ [1] to process the output of ‘Induced Norm Linear’,
formulated as:

T
Pila(z) = { (k—;m?’ — kx? + ac) ek

where k is treated as a fixed hyperparameter and set to 5
in our experiments. Finally, consistent with Eq. (2) and Eq.
(1), the whole INN consists of R = 3 blocks and each block
includes K = 2 units.

if z > 0,
if x <0,

C. Supplementary on Comparison
C.1. Comparison with More SOTA Methods

The methods shown in the main text are mainly
reconstruction-based methods [2, 7, 15, 17]. Therefore,
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Figure 1. The structure of invertible mapping unit. The ‘induced
norm linear’ is applied to model f;. ‘Pila’ is 1-Lipchitz activation
function. Each ‘iMonotone block’ consists of K ‘induced norm
linear’. The whole INN consists of R ‘iMonotone blocks’.

for completeness, we will compare more SOTA meth-
ods in Table 1, which includes some augmentation-based
methods, such as DRAEM [16], DeSTSeg [18], and Om-
niAL [19] and feature-embedding-based SOTA methods,
such as PatchCore [12]. We found that OmniAL achieves
good anomaly localization on MVTec AD dataset, but fails
on the VisA dataset. We believe that there is a huge gap be-
tween the pseudo defects generated by the traditional aug-
mentation method of OmniAL and the fine-grained real de-
fects in the VisA dataset, which leads to its low performance
on the VisA dataset. In addition, the performance of Patch-
Core in multi-class task is much lower than that in single-
class task, because of the increased diversity of patch em-
bedding vectors in the core set, which makes it more diffi-
cult to deploy distance-based matching algorithms. Further-
more, we compare recent SOTA methods [4, 6, 9, 10]. Our
method outperforms recent reconstruction-based methods,
MOoEAD [10] and OneNIP [4], by +1.3 and +1.1 in terms
of image-level AUROC on MVTec AD. Compared to the
latest work, MambaAD [6], our DecAD improves image-
level and pixel-level AUROC by +0.4/0.1 on MVTec AD,
and image-level AUROC +-0.4 on VisA.

C.2. Comparison on One-Class AD Task

Anomaly leakage also exists in one-class AD task. There-
fore, we compare some one-class unsupervised AD meth-
ods [5, 8, 12, 13, 18] on MVTec AD. Our DecAD shows a
superior performance in terms of 98.6 P-AUROC and 95.7
AUPRO under one-class AD setting in Table 2.



Table 1. Anomaly detection results with image-level AUROC,
pixel-level AUROC metrics on MVTec AD dataset. The publica-
tion information corresponding to each method is also displayed
in this table. Bold/underline values indicate the best/runner-up. I:
image-level AUROC. P: pixel-level AUROC.

MVTec AD VisA
I P I P
ICCv2021 88.1 872 889 96.1
CVPR2022 964 957 915 979
CVPR2023 89.2 93.1 889 96.1
CVPR2023 972 983 87.8 96.6

Method Pub&Year

DRAEM [16]
PatchCore [12]
DeSTSeg [18]
OmniAL [19]

LafitE [14] Arxiv2023 985 97.6 - -

HVQ-Trans [9] NIPS2023 98.0 973 932 98.7
MOoEAD [10] ECCV2024 977 97.0 93.1 98.7
OneNIP [4] ECCV2024 979 979 925 98.7
MambaAD [6]  NIPS2024 98.6 977 943 985
Ours - 99.0 97.8 94.7 985

Table 2. Anomaly detection results with image-level AUROC,
pixel-level AUROC, and AUPRO on MVTecAD dataset un-
der one-class AD setting. Bold/underline values indicate the
best/runner-up.

Method I-AUROC P-AUROC AUPRO
DeSTSeg [18] 99.0 97.9 -
SimpleNet [8] 99.6 98.1 -

MemKD [5] 99.6 98.2 94.5
RD++ [13] 99.4 98.3 95.0
PatchCore-L [12] 99.6 98.2 93.5
Ours 99.7 98.6 95.7

C.3. Complexity Analysis

As shown in Table 3, compared to the augmentation-based
method, our DecAD outperforms DRAEM [16] on three
efficiency measures. DRAEM utilizes image processing
techniques such as texture cropping and pasting to generate
image-level anomaly samples, which is time-consuming.
However, our DecAD adopts feature-level anomaly synthe-
sis, which only requires adding adversarial perturbations to
patch embeddings. This process only involves gradient cal-
culation, significantly reducing synthesis time. Compared
with the previous CNN-based distillation method, RD4AD
[2], our method has fewer learnable parameters. However,
since our DecAD is based on the ViT framework, it invisibly
increases the computational complexity, thereby increasing
FLOPs. Finally, compared to UniAD [15], our method only
requires 67 epochs (batch size is 16) for training to achieve
better performance, while UniAD requires 1000 epochs for
training, which invisibly increases the time cost of training.

Table 3. Complexity comparison between our DecAD and other
important methods on MVTec AD. Our method requires 15,000
iterations for training, which is approximately 67 epochs. Learn-
able parameters, FLOPs, and train epochs are reported in this table.
Bold/underline values indicate the best/runner-up.

Method Learnable FLOPs | Train Epoch
Parameters

DRAEM[16] 97.4M 198G 700

RD4AD[2] 80.6M 24.6G 150

UniAD[15] 24.5M 3.6G 1000

Ours \ 23.2M \ 48.6G \ 67

D. Supplementary on Ablation Study

D.1. Block Choices in Encoder

In this work, we apply ViT-B/14 pre-trained by DINOv2 as
our encoder, which consists of 12 residual attention blocks.
Extensive experiments show that selecting layers with ei-
ther very high or very low indexes for reconstruction will
degrade detection performance, as shown in Table 4. The
best performance is achieved when the selected indexes are
close to the middle and the step between them is three (e.g.,
[3, 6, 9] in Table 4). We believe that the features extracted
from blocks with lower indexes contain more geometric in-
formation, while those from higher indexes blocks encapsu-
late more abstract semantic information. Since defects of-
ten have irregular geometric structures and unusual colors,
selecting features from the front or middle layers is more
suitable for reconstruction-based frameworks.

Table 4. Impact of different indexes of residual attention blocks in
the frozen encoder. Image-level AUROC and pixel-level AUROC
are reported on MVTec AD dataset. Bold/underline values indi-
cate the best/runner-up.

Indexes I/P-AUROC Indexes I/P-AUROC
[1612] 96.3/95.8 [2812] 97.8/96.7
[24 8] 97.5/96.4 [3610] 98.3/97.2
[4810] 98.7/97.6 [36 9] 99.0/97.8

D.2. Performance Gain of DecAD as a Plugin

Our proposed DecAD consists of anomaly synthesis and
anomaly decoupling and can be deployed as a plugin for ex-
isting reconstruction and distillation based methods. There-
fore, we test DecAD as a plugin to enhance existing un-
supervised AD methods [2, 6, 15]. We report the mean
of seven metrics on MVTec AD and VisA in Table 5.
Upon RD4AD [2], our method improves its performance
by +3.3 and +1.2 on MVTec AD and VisA, respectively.
For reconstruction-based UniAD [15], our DecAD obtains



Table 5. The performance gain of DecAD as a Plugin. We report
the mean of seven metrics on MVTec AD and VisA datasets.

MVTec AD VisA
Method Mean Method Mean
RD4AD [2] 82.3 RD4AD [2] 77.8
UniAD [15] 81.7 UniAD [15] 74.6
MambaAD [6] 86.0  MambaAD [6] 78.7
RD4AD+Ours 85.6 RD4AD+Ours 79.0
UniAD+Ours 83.5 UniAD+Ours 76.5

MambaAD+QOurs 86.8 MambaAD+Qurs 79.9

a gain of +1.8 and +1.9 on MVTec AD and VisA. More-
over, based on MambaAD [6], our work also works well
and improves its performance by +0.8 and +1.2 on the two
datasets. Since these three methods apply pre-trained en-
coders different from our DecAD, Table 5 provides more in-
tuitive comparisons, demonstrating the effectiveness of our
method under different network settings.

D.3. Choices of Magnitude ¢ in Adversarial Noise

In this section, we investigate the impact of different J in
adversarial noise €* = § * | Vx(H(D(x)))|l2- Selecting
6 = 2.5, we obtain the best classification result of 99.0 in
terms of image-level AUROC. The best anomaly localiza-
tion performance is achieved through setting § = 3, where
pixel-level AUROC is 97.9 and AUPRO is 92.7. When we
select a lower magnitude 6 < 2, anomaly classification and
localization are degraded, as shown in Table 6. In our main
text, we select & = 2.5 to achieve the best anomaly classifi-
cation.

Table 6. Impact of different magnitudes § in adversarial noise
€”. Image-level AUROC, pixel-level AUROC, and AUPRO are
reported on MVTec AD dataset. Bold/underline values indicate
the best/runner-up.

Magnitude § I-AUROC P-AUROC AUPRO
0=1.0 98.3 97.2 91.7
0=15 98.2 97.4 92.1
0 =2.0 98.6 97.6 92.5
0 =25 99.0 97.8 92.5
0=3.0 98.6 97.9 92.7

E. Visualization for Real-IAD

In our main paper, we show anomaly localization on
MVTec AD and VisA datasets. For the integrity of the re-
sults, we show the visualization for Real-IAD in Fig.2.

Result Result

Sample GT

Anomaly Localization on Real-IAD

Figure 2. The visualization for Real-IAD dataset.

F. Limitations

F.1. Lack of Multi-scale Feature Information

Since our framework is based on the ViT, the size of each
layer output remains consistent. Therefore, our framework
lacks multi-scale feature information, which will degrade
the detection performance of the model for fine-grained de-
fects. On the contrary, the CNN-based method, RD4AD [2],
can extract multi-scale feature information for distillation,
which makes them perform well on datasets such as VisA
with more fine-grained defects. In the future, we will focus
on ViT network with multi-scale information for anomaly
detection.

F.2. Common Issue in Distillation Frameworks

The existing anomaly detection distillation frameworks ap-
ply encoders pre-trained on natural datasets to extract fea-
tures. However, there is a huge gap between natural and
industrial data, which makes the encoded features unable to
fully represent the patterns of anomalies. Although some
works adopt adapters after the frozen encoder, they can-
not completely overcome this issue. Our DecAD frame-



work also applies an encoder pre-trained on natural images,
which essentially may not extract representative features for
distillation.
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