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Supplementary Material

Sec. A provides more implementation details. Sec. B
presents additional ablation studies on DAC. Sec. C dis-
cusses InternVL prompt choices and their effects. Sec. D
demonstrates the applicability of DAC in scenarios where
only point cloud data is available. Sec. E showcases more
qualitative results. We also present additional experiments
on both seen and unseen categories in Sec. F. Sec. G pro-
vides more comparisons with the state-of-the-arts by vary-
ing view numbers. Sec. H give some retrieval examples
to gain some insights about the limitation of our frame-
work. Finally, Sec. I investigates the impact of different
multimodal large language models (MLLMs) on DAC per-
formance.

A. More Dataset and Implementation Details
The four existing open-set 3DOR datasets, which are cu-
rated by Feng et al. [6] are described in detail below. 1)
OS-ESB-core is created based on ESB [9], which covers
CAD objects of high genus (e.g., holes and tunnels) from
the mechanical engineering domain. It includes only 98
training objects from 17 seen categories, 120 probe objects
and 452 gallery objects from 24 unseen categories. 2) OS-
NTU-core has 378 training objects in 13 seen classes, 270
probe and 1,271 gallery objects in 54 unseen classes. Each
object is coming from NTU [2]. 3) OS-MN40-core is con-
structed from ModelNet40 [16]. It has 2,821 synthetic ob-
jects from 8 seen categories for training, 160 probe objects
and 9,329 gallery objects from 32 unseen categories for test-
ing. 4) OS-ABO-core is a challenging, large-scale, real-
word dataset with the 3D objects derived from real-word
household items [4]. It contains 1,082 training objects in 4
seen categories, 85 probe objects and 5,455 gallery objects
divided into 17 unseen categories.

For fair comparisons with off-the-shelf point cloud en-
coders, we further extend our framework by taking depth
maps from point clouds. For this experiment, we have cu-
rated a zero-shot ZS-Objaverse-Core based on the large-
scale Objaverse dataset. The original Objaverse [5] con-
tains 46,832 shapes across 1,156 LVIS categories. We fur-
ther split each category of Objaverse-LVIS into a query set
and a target set with a 20%/80% ratio, resulting in a total of
8,798 query samples and 37,407 target samples. For the ex-
periment, 10 depth maps are projected for each point cloud
online following [21].

For a comprehensive comparison, we reimplement MV-
CLIP [14] to evaluate its performance on open-set 3D
datasets. For textual prompts, we use a pre-defined tem-

plate: “a synthetic 3D model view of [cls] with different an-
gles”. It is important to note that we must provide ground-
truth category to MV-CLIP for view selection, which is not
suitable for open-set retrieval, where the category informa-
tion for unseen categories is unknown. We select Mselec
views based on entropy and perform mean pooling over
them. Following MV-CLIP, Mselec is set to 4.

For ULIP-2 [18], we simply use the open-source
PointBERT-CLIP ViT-G/14 pre-trained model as the back-
bone and directly employ the output features from the last
layer of the model for retrieval. Similarly, For Open-
Shape [11], we use the PointBERT-CLIP ViT-B/32 and
PointBERT-CLIP ViT-L/14 models, with the extracted fea-
tures for retrieval directly. It is worth mentioning that
we also experimented with fine-tuning both ULIP-2 and
OpenShape for open-set setups. However, fine-tuning leads
to worse performance, suggesting that the irregular point
clouds are somewhat fragile representations that easily
overfit to known categories in open-set setups.

B. More Ablations

B.1. Impact of Rank Number
We investigate the effect of decomposed matrix rank num-
bers in LoRA by setting it to 2, 4, 8, and 12. As shown
in Table 1, increasing the rank from 2 to 8 leads to consis-
tent improvements in mAP, NDCG, and ANMRR metrics.
However, further increasing the rank to 12 results in a slight
decline in performance. A rank of 8 strikes the best balance
between performance and training complexity, and thus, all
experiments are conducted with rank = 8.

LoRA Rank mAP↑ NDCG↑ ANMRR↓
2 62.00 72.36 40.25
4 62.25 72.17 39.91
8 62.40 72.63 39.82

12 62.17 72.13 39.92

Table 1. Ablation of LoRA rank number with CLIP ViT-B/32 as
the backbone on the OS-MN40-core dataset.

B.2. Impact of Fusion Weight α
The hyper-parameter α governs the relative weights of text
features to image ones. To study its effects, we adjust the
fusion ratio α within the range of 0 to 1 and conduct ex-
periments on OS-MN40-core. The results are summarized



in Figure 1. As shown, an appropriate choice of α is es-
sential for good retrieval performance. For instance, with
CLIP ViT-L/14, we observe the performances are gradually
improved by increasing α from 0 to 0.25. When α is set to
0.25, we have the best mAP of 68.98%. However, further
increasing α results in a decline in performance. Similar
phenomena are also observed when using CLIP ViT-B/32,
as well as other datasets. In Table 2, we further provide the
optimal values for α across all the datasets. Interestingly,
we find that on the OS-ESB-core dataset, a smaller α gives
better results (i.e., 0.1). In contrast, for other datasets, espe-
cially the OS-ABO-core dataset, a larger value is preferred.
We assume that it is difficult to derive accurate text embed-
dings for OS-ESB-core, which consists of high-genus me-
chanical parts [9]. In contrast, for common semantic real-
world categories, text embeddings from InternVL are more
accurate, and thus more weights are needed. We set these
values as our default configurations for our experiments.
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Figure 1. Impact of fusion weight α on OS-MN40-core.

Dataset Backbone α mAP↑ NDCG↑ ANMRR↓

OS-ESB-core ViT-B/32 α = 0.1 58.70 24.27 45.67
ViT-L/14 α = 0.1 57.80 24.36 47.44

OS-NTU-core ViT-B/32 α = 0.6 59.21 27.06 44.58
ViT-L/14 α = 0.3 65.83 28.78 37.46

OS-MN40-core ViT-B/32 α = 0.4 62.40 72.63 39.82
ViT-L/14 α = 0.25 68.98 77.59 33.87

OS-ABO-core ViT-B/32 α = 0.85 66.10 59.01 36.12
ViT-L/14 α = 0.7 70.74 60.87 32.14

Table 2. Optimal α values across different datasets and backbones.

B.3. Impact of Normalization
After fusing image and text features with elementwise sum-
mation, it is beneficial to further utilize activation functions
for normalization. We have evaluated three commonly-used
activation functions: ReLU, Tanh, and Sigmoid, on the OS-
ABO-core dataset. As shown in Table 3, with ReLU, DAC
attains inferior results. However, when adopting Sigmoid
and Tanh, we observe consistent improvements, with Tanh
being more advantageous. Especially, for CLIP ViT-B/32,

Tanh brings an improvement of over 1% mAP. It demon-
strates that adopting Tanh for normalization is an effective
option to further augment the discriminativeness of the de-
rived 3D descriptors.

We also analyze why Tanh yields better results. The
Tanh function maps input values to the range [−1, 1], align-
ing well with the vector space used by CLIP for retrieval.
This property helps the model produce evenly distributed
outputs that are consistent with CLIP’s embedding struc-
ture. In contrast, ReLU sets negative values to zero, retain-
ing only positive values, which can lead to information loss
and disrupt the symmetry required for the relative relation-
ships in CLIP’s vector space. On the other hand, Sigmoid
restricts outputs to the [0, 1] range, which can weaken vector
directionality and produce many low-magnitude weights,
making it less compatible with CLIP’s feature distribution.
Thus, Tanh emerges as the most suitable choice, preserving
the necessary feature balance and enhancing the robustness
of the 3D descriptors for retrieval.

Backbone Activation Function mAP↑ NDCG↑ ANMRR↓

ViT-B/32

- 64.63 58.52 37.79
ReLU 63.13 58.03 39.08

Sigmoid 65.58 58.82 37.08
Tanh 66.10 59.01 36.12

ViT-L/14

- 69.33 60.43 32.98
ReLU 68.79 60.23 33.62

Sigmoid 69.95 60.60 32.83
Tanh 70.74 60.87 32.14

Table 3. Impact of Activation Functions on OS-ABO-core.

B.4. Training strategy
We further investigate the impact of different textual de-
scriptions during LoRA training and their influence on text
fusion during retrieval. We have tested two settings: the first
uses a fixed, hand-crafted template (“a synthetic 3D model
view of [cls] with different angles”), while the second em-
ploys descriptions generated by InternVL [3] for each class.
The experimental results are summarized in Table 4.

As shown, both training strategies yield comparable per-
formance when retrieval is conducted using only image
features. However, descriptions generated by InternVL
demonstrate superior results in scenarios where text fusion
is applied during retrieval. This improvement can be at-
tributed to the consistency between the descriptions used
during training and those generated by InternVL for text
fusion in the retrieval phase. Fine-tuning with InternVL-
generated descriptions enables more seamless integration
of visual and textual features, enhancing the retrieval per-
formance.

We have also experimented with providing InternVL
with view projections and label information during training,
allowing it to generate a description for each training sam-



Description Method OS-ESB-core OS-NTU-core OS-MN40-core OS-ABO-core

Hand-crafted
Images only 57.19 / 23.95 / 47.18 54.66 / 25.73 / 49.17 58.96 / 71.65 / 42.94 56.70 / 56.05 / 44.55

Images with texts +1.15 / +0.23 / -0.76 +3.81 / +1.13 / -4.24 +2.88 / +0.82 / -2.65 +9.06 / +2.80 / -7.98

Generated
Images only 57.45 / 23.96 / 47.13 54.57 / 25.80 / 49.08 59.35 / 71.89 / 42.72 56.45 / 55.91 / 45.33

Images with texts +1.25 / +0.31 / -1.46 +4.64 / +1.26 / -4.50 +3.05 / +0.74 / -2.90 +9.65 / +3.10 / -9.21

Table 4. Impact of different training text descriptions with ViT-B/32 as the backbone. Values are presented in mAP/NDCG/ANMRR
format.

ple. While this approach may appear to better align with
the testing process, we have observed that the unstable de-
scriptions generated for individual samples lead the model
to focus too much on the specific characteristics of each
sample, neglecting the learning of more stable, category-
level features. This phenomenon is more pronounced in
the OS-ESB-core dataset with fewer samples. As shown in
Table 5, using individual-level descriptions achieved only
48.78 mAP, which is significantly lower than the 58.70
mAP obtained with category-level descriptions. Therefore,
we have opted to provide a single description per category
rather than per sample, as this can yield more consistent and
effective results.

Dataset Description mAP↑ NDCG↑ ANMRR↓

OS-ESB-core
Individual-level 48.78 21.90 54.37
Category-level 58.70 24.27 45.67

Table 5. Impact of different description generation methods with
ViT-B/32 as the backbone.

C. More Choices for InternVL Prompts
The selection of prompts is crucial for the responses gener-
ated by InternVL, yet finding a universal prompt that fits all
scenarios is quite challenging. Using ViT-L/14 as the back-
bone, we have tested the impact of two different prompts:

- Prompt A: “ There are images of an object from differ-
ent angles. Describe this object in one sentence.” (This is
the default prompt used in our method.)

- Prompt B: “ There are images of an object from differ-
ent angles. Describe this object’s shape information in one
sentence.”

Prompt A attempts to derive explicit category informa-
tion, while prompt B attempts to derive descriptive shape
information. The experimental results are detailed in Ta-
ble 6. From the table, we can observe that in the OS-ESB-
core, OS-NTU-core, and OS-MN40-core datasets, the re-
sults from both prompts are relatively similar. However,
in the OS-ABO-core dataset, the effect of the prompt is
more pronounced. For instance, the mAP for Prompt A is
68.40%, whereas Prompt B yields a lower mAP of 66.43%.

We randomly select a chair object from the OS-ABO-
core dataset and input it into InternVL using different

Dataset Prompt mAP↑ NDCG↑ ANMRR↓

OS-ESB-core A 57.80 24.36 47.44
B 57.89 24.37 47.31

OS-NTU-core A 65.83 28.78 37.46
B 65.58 28.74 37.59

OS-MN40-core A 68.98 77.59 33.87
B 68.81 77.56 34.18

OS-ABO-core A 70.74 60.87 32.14
B 68.68 59.23 33.57

Table 6. Impact of different prompts.

prompts, resulting in the following two outputs: “A clas-
sic brown leather armchair with a high back and rounded
armrests, featuring subtle nailhead trim along its edges,”
and “This object has a rounded, high-backed shape with
a broad seat, armrests, and a slight outward curve on the
back and arms.” We hypothesize that the statement gen-
erated by Prompt A benefits from more explicit label in-
formation, leading to superior results. Conversely, inaccu-
rate label information could adversely affect the model’s ex-
pressiveness. Therefore, identifying a universally applica-
ble prompt is quite challenging, and further exploration into
prompt design is essential.
Why not just let InternVL judge the categories? We also
conduct a simple experiment to evaluate the performance of
directly using InternVL for category classification. On the
challenging OS-ESB-core dataset, even when provided with
ground-truth category options, InternVL achieved only 11%
accuracy. Incorrect category predictions in such cases can
be catastrophic for our task, as they severely disrupt feature
representation and retrieval. Therefore, instead of relying
on InternVL for classification, we opted to use it for gener-
ating descriptive information, which provides more robust
and generalized representations.

In conclusion, while prompt selection plays a critical
role, the design space for prompts remains vast, and further
exploration is required to optimize their effectiveness.

D. Extending to Point Cloud Retrieval
Setup. For this experiment, we curate ZS-Objaverse-Core
based on Objaverse-LVIS, which is an annotated subset of



Objaverse [5], for zero-shot point cloud retrieval. For fair
comparisons with off-the-shelf point cloud encoders Open-
Shape [11] and ULIP series [17, 18], our baseline only takes
depth images from point clouds with the online projection
scheme [21].
Results. As shown in Table 7, our method based on depth
maps also achieves superior performance, surpassing ULIP-
2 by +1.22% mAP. Note that all compared methods require
huge resources to train on a large-scale 3D dataset of point
cloud, text, and image triplets. By contrast, our baseline
offers a much cheaper solution without 3D training.

Method Backbone mAP↑ NDCG↑ ANMRR↓

OpenShape (point cloud) PointBERT-CLIP ViT-L/14 11.93 14.10 85.40
ULIP (point cloud) PointMLP - SLIP 6.69 9.17 90.82
ULIP-2 (point cloud) PointBERT - CLIP ViT-G/14 18.15 19.34 79.03
Ours (depth image) CLIP ViT-L/14 19.37 20.15 78.23

Table 7. Performance on ZS-Objaverse-Core.

E. Qualitative Results
To further understand how our method improves the rep-
resentations, we visualize correlation heatmaps. Specifi-
cally, we randomly select three categories from OS-ABO-
core, with ten samples chosen from each category. We draw
three heatmaps: the first represents features extracted from
the original CLIP, the second shows features extracted us-
ing CLIP with LoRA added, and the third depicts features
obtained after fusing with InternVL on top of the LoRA-
enhanced features. The detailed visual results are illus-
trated in Figure 2. As shown, we observe that, compared
to the original CLIP, the addition of LoRA significantly in-
creases the similarity among samples within the same cate-
gory while reducing similarity with samples from different
categories. This effect becomes even more evident in the
third figure, which incorporates text features extracted by
InternVL. This indicates that DAC not only enhances intra-
class similarity but also effectively diminishes inter-class
similarity, thereby markedly improving the discriminative
power of the retrieval features.

F. Retrieval on Seen and Unseen Categories
In real-world applications, the ability to retrieve 3D objects
of both seen and unseen categories is crucial. In this section,
we follow HGM2R [6] and split the ModelNet40 dataset
into two subsets: DS (for seen categories) and DU (for un-
seen categories). Each subset consists of 20 categories, and
the 3D objects within each category are further divided into
training sets Dtr

S/D
tr
U and retrieval sets Dre

S /D
re
U , with 80%

of the data used for training and 20% for retrieval. The mod-
els are trained on Dtr

S and evaluated separately on the seen
categories Dre

S and unseen categories Dre
U .

As shown in Table 8, our method has competitive per-
formance on seen categories compared to other approaches
by solely relying on multi-view images. More importantly,
we achieve superior results on unseen categories, reach-
ing an mAP of 86.27%, surpassing previous state-of-the-
art HGM2R [6] by a large margin. Notably, our model
demonstrates a reduced performance gap between seen and
unseen categories, with only a 4.85% performance differ-
ence—significantly lower than the 11.87% gap observed
with HGM2R and the 19.73% gap with InfoNCE. This indi-
cates that our approach is particularly effective for retriev-
ing unknown categories, allowing for an enhancement in
unseen performance while maintaining competitive results
on seen categories. Thus, our method is especially advan-
tageous in complex environments, where retrieval perfor-
mance for unseen categories is crucial.

Method
On Seen Categories On Unseen Categories

mAP↑ Recall@100↑ mAP↑ Recall@100↑

TCL [7] 93.50 82.14 73.92 71.76
MMJM [12] 91.99 80.78 73.07 71.38
SDML [8] 88.50 78.50 74.69 72.39
CMCL [10] 90.99 79.60 75.21 72.49
MMSAE [15] 88.72 78.61 76.03 72.94
MCWSA [19] 85.70 76.83 72.89 70.56
PROSER [20] 87.71 77.78 74.93 72.56
InfoNCE [13] 93.65 82.19 73.92 71.64
HGM2R [6] 94.10 82.47 82.23 78.21
Ours (ViT-B/32) 87.96 77.89 83.00 79.10
Ours (ViT-L/14) 91.12 80.46 86.27 81.76

Table 8. Separate retrieval results on both seen and unseen cate-
gories.

G. More Experiments on View Numbers

We further study the impact of the number of view im-
ages on the OS-MN40-core dataset. The adjustment of view
numbers affects two components: the number of views in-
put into CLIP and the number of views input into InternVL.
In our experimental setup, the view counts for both compo-
nents are kept the same. As shown in Figure 4, the mAP
values increase with the number of views across different
backbones. It suggests that additional views provide more
detailed and accurate information about 3D objects, giving
better retrieval performance.

We also compare with other competing methods under
the same number of views, as summarized in Table 9. The
results indicate that our approach, particularly with the ViT-
L/14 backbone, outperforms other methods in both the 4-
view and 12-view settings. Specifically, we achieve 64.12%
mAP and 68.08% mAP for the ViT-L/14 backbone, respec-
tively, surpassing the previous best method HGM2R greatly.
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Figure 2. Correlation heatmaps of features from 3 randomly selected classes, each with 10 samples on OS-ABO-core. Darker red indicates
higher similarity.
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Figure 3. Retrieval examples on OS-MN40-core. Incorrect matches are in red boxes.

H. More Visualization

To gain more insights into our framework, we provide some
retrieval examples of our method, especially including some
failure cases, on OS-MN40-core. As shown in Figure 3,
for objects of easy categories (e.g., chair), our method pro-
duces discriminative 3D representations for accurate re-
trieval. However, it fails when two objects have similar
global appearances but from distinct categories. For in-

stance, a tent instance (row 5) globally looks like a laptop
object. Yet, notice that a laptop has ver distinct local fea-
tures on the integrated keyboard. The keyboard serves as
a strong discriminative cue for identifying a laptop. In the
future, we plan to emphasizing these local features during
the representation learning process, which could potentially
avoid these failure cases.
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Figure 4. Impact of View Numbers with different backbones.

Method
Number of Views

4-v 12-v

TCL [7] 46.46 47.36
MMJM [12] 46.81 48.11
SDML [8] 49.60 50.75
CMCL [10] 50.06 51.38
MMSAE [15] 50.85 52.09
MCWSA [19] 47.28 48.78
PROSER [20] 48.45 49.00
InfoNCE [13] 46.46 47.37
HGM2R [6] 63.36 64.20
Ours (ViT-B/32) 59.45 61.92
Ours (ViT-L/14) 64.12 68.08

Table 9. Performance comparison on view numbers.

I. More Choices of MLLM
Our framework is compatible with any off-the-self pre-
trained MLLM, enabling seamless integration of the latest
advancements in multimodal learning. To study it, we ex-
periment with different choices for multi-modal large lan-
guage models (MLLMs). Table 10 shows that DAC’s per-
formance improves progressively as InternVL [3] scales
from 1B to 8B parameters. It suggests that MLLMs with
stronger reasoning capabilities lead to better results. Fur-
thermore, the use of Qwen2.5-VL [1] further enhances DAC
performance, highlighting the potential of DAC.

MLLM mAP↑ NDCG↑ ANMRR↓

InternVL-1B [3] 61.48 72.64 40.60
InternVL-4B [3] 62.40 72.63 39.82
InternVL-8B [3] 63.08 72.93 39.13
Qwen2.5-VL-3B [1] 63.24 73.16 38.88
Qwen2.5-VL-7B [1] 66.72 75.99 35.86

Table 10. More Choices of MLLM.
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