6. Supplementary Experiments

6.1. Keypoint Confidence Regions

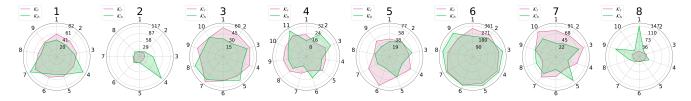


Figure 6. Radar charts illustrating the mean radii of keypoint confidence regions (\mathcal{K}^h and \mathcal{K}^r). The eight radar charts correspond to the eight objects in the LMO dataset (from left to right). Each axis in a given radar chart represents one of the specific object's keypoints.

LMO [23]	Ours	[9]		[11]
Objects		$\epsilon = 0.1$	$\epsilon = 0.4$	
ape (1)	76.78	77.70	79.52	69.14
can (2)	91.96	73.41	75.97	86.09
cat (3)	90.11	87.36	90.59	65.12
driller (4)	89.29	79.32	83.08	61.44
duck (5)	84.39	82.71	82.54	73.06
eggbox (6)	6.85	0	0	8.43
glue (7)	69.83	56.49	71.08	55.37
holepuncher (8)	86.44	81.65	82.89	69.84
mean	74.45	67.33	70.71	61.06
SPEED [22]	97.09	57.80	57.40	57.46

LMO [23]	Ours \mathcal{K}^r		$[9] \mathcal{K}^h$	
Objects	$\epsilon = 0.1$	$\epsilon = 0.4$	$\epsilon = 0.1$	$\epsilon = 0.4$
1	90.37	61.51	88.35	64.87
2	89.97	59.90	93.54	61.81
3	91.63	64.63	92.30	63.69
4	91.84	59.30	90.86	64.74
5	90.31	64.09	90.13	64.94
6	88.40	59.90	88.86	60.37
7	92.02	54.34	91.97	59.83
8	90.66	59.42	93.31	66.86
mean	90.65	60.38	91.16	63.38
SPEED [22]	89.66	61.25	88.88	62.64

Table 5. Acc of baseline methods and our approach

Table 6. η^{kpt} of baseline methods and our approach

6.2. Qualitative Pose Confidence Regions

Fig. 7 and Fig. 8 provides SPEED satellites' \mathcal{K}^r , \mathcal{R}^d_r , and \mathcal{T}^d_r with $\epsilon = 0.1$ and $\epsilon = 0.4$ across varying viewpoints and diverse backgrounds.

Fig. 9 and Fig. 10 provides 8 LMO objects' $\mathcal{P}_{\Theta}(\mathbf{x}_n|\mathbf{I}), \mathcal{K}^r, \mathcal{R}_r^d$, and \mathcal{T}_r^d with $\epsilon = 0.1$ and $\epsilon = 0.4$.

6.3. Single-shot PnP

Unlike sampling methods, in this paper we follows [45] utilizing the single-shot PnP weighted by σ_n , thereby significantly enhancing the algorithm's efficiency. To incorporate the uncertainty into our single-shot PnP framework, we assign weights to $\tilde{\mathbf{x}}_n$ based on σ^n . The optimization problem for pose estimation can be expressed as follows:

$$\min_{\mathbf{R}, \mathbf{t}} \sum_{n=1}^{N} \rho \left(\mathbf{r}(n)^{\top} \left(\boldsymbol{\sigma}^{n} \right)^{-1} \mathbf{r}(n) \right), \tag{19}$$

where $\mathbf{r}(i)$ denotes the reprojection error, defined as:

$$\mathbf{r}(n) = \lambda_i \begin{bmatrix} \mathbf{x}^n \\ 1 \end{bmatrix} - \mathbf{K} \left[\mathbf{R} | \mathbf{t} \right] \begin{bmatrix} \mathbf{z}^n \\ 1 \end{bmatrix}. \tag{20}$$

In Eq. (20), λ_i represents the depth value associated with the 3D point \mathbf{z}^n , used to scale the projection onto the 2D image plane accurately. In Eq. (19), $\rho(\cdot)$ represents a robust loss function. Consistent with the methodology of Wang *et al.* [45], we employ the Huber loss as the robust estimation function, given by:

$$H(e) = \begin{cases} \frac{1}{2}e^2, & \text{if } e \le \delta\\ \delta(|e| - \frac{1}{2}\delta), & \text{otherwise} \end{cases}$$
 (21)

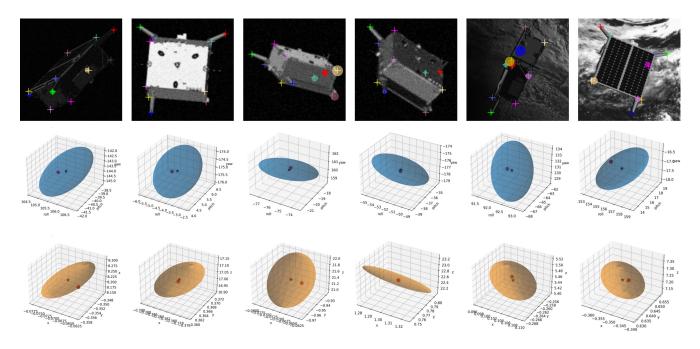


Figure 7. \mathcal{K}^r , \mathcal{R}^d_r , and \mathcal{T}^d_r (corresponding to rows 1 to 3) for six images (corresponding to columns 1 to 6) in the SPEED dataset when $\epsilon = 0.1$.

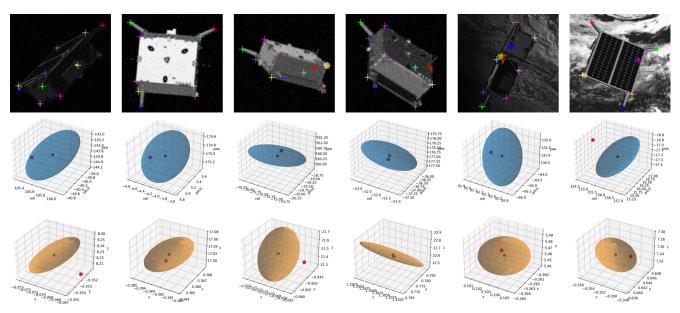


Figure 8. \mathcal{K}^r , \mathcal{R}^d_r , and \mathcal{T}^d_r (corresponding to rows 1 to 3) for six images (corresponding to columns 1 to 6) in the SPEED dataset when $\epsilon = 0.4$.

Conventional PnP algorithms are prone to inaccuracies from poorly localized keypoints. By integrating uncertainty weights into our single-shot PnP approach, we enhance pose estimation accuracy and overcome the limitations of traditional methods.

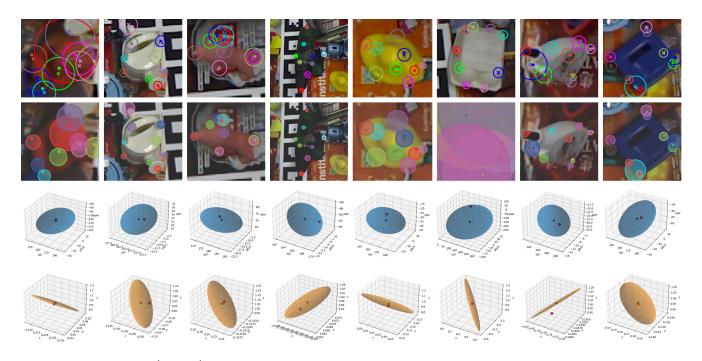


Figure 9. $\mathcal{P}_{\Theta}(\mathbf{x}_n|\mathbf{I})$, \mathcal{K}^r , \mathcal{R}^d_r , and \mathcal{T}^d_r (corresponding to rows 1 to 4) for eight objects (corresponding to columns 1 to 8) in some image of the LMO dataset when $\epsilon=0.1$.

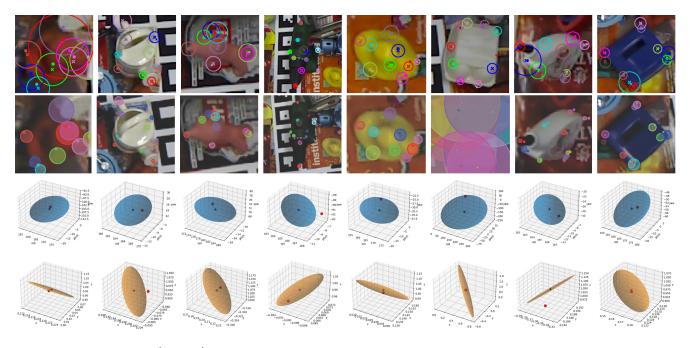


Figure 10. $\mathcal{P}_{\Theta}(\mathbf{x}_n|\mathbf{I})$, \mathcal{K}^r , \mathcal{R}^d_r , and \mathcal{T}^d_r (corresponding to rows 1 to 4) for eight objects (corresponding to columns 1 to 8) in some image of the LMO dataset when $\epsilon = 0.4$.