
6. Supplementary Experiments
6.1. Keypoint Confidence Regions

Figure 6. Radar charts illustrating the mean radii of keypoint confidence regions (Kh and Kr). The eight radar charts correspond to the
eight objects in the LMO dataset (from left to right). Each axis in a given radar chart represents one of the specific object’s keypoints.

LMO [23] Ours [9] [11]
Objects ϵ = 0.1 ϵ = 0.4
ape (1) 76.78 77.70 79.52 69.14
can (2) 91.96 73.41 75.97 86.09
cat (3) 90.11 87.36 90.59 65.12

driller (4) 89.29 79.32 83.08 61.44
duck (5) 84.39 82.71 82.54 73.06

eggbox (6) 6.85 0 0 8.43
glue (7) 69.83 56.49 71.08 55.37

holepuncher (8) 86.44 81.65 82.89 69.84
mean 74.45 67.33 70.71 61.06

SPEED [22] 97.09 57.80 57.40 57.46

Table 5. Acc of baseline methods and our approach

LMO [23] Ours Kr [9] Kh
Objects ϵ = 0.1 ϵ = 0.4 ϵ = 0.1 ϵ = 0.4

1 90.37 61.51 88.35 64.87
2 89.97 59.90 93.54 61.81
3 91.63 64.63 92.30 63.69
4 91.84 59.30 90.86 64.74
5 90.31 64.09 90.13 64.94
6 88.40 59.90 88.86 60.37
7 92.02 54.34 91.97 59.83
8 90.66 59.42 93.31 66.86

mean 90.65 60.38 91.16 63.38
SPEED [22] 89.66 61.25 88.88 62.64

Table 6. ηkpt of baseline methods and our approach

6.2. Qualitative Pose Confidence Regions
Fig. 7 and Fig. 8 provides SPEED satellites’ Kr, Rd

r , and T d
r with ϵ = 0.1 and ϵ = 0.4 across varying viewpoints and diverse

backgrounds.
Fig. 9 and Fig. 10 provides 8 LMO objects’ PΘ(xn|I), Kr, Rd

r , and T d
r with ϵ = 0.1 and ϵ = 0.4.

6.3. Single-shot PnP
Unlike sampling methods, in this paper we follows [45] utilizing the single-shot PnP weighted by σn, thereby significantly
enhancing the algorithm’s efficiency. To incorporate the uncertainty into our single-shot PnP framework, we assign weights
to x̃n based on σn. The optimization problem for pose estimation can be expressed as follows:
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where r(i) denotes the reprojection error, defined as:
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In Eq. (20), λi represents the depth value associated with the 3D point zn, used to scale the projection onto the 2D image
plane accurately. In Eq. (19), ρ(·) represents a robust loss function. Consistent with the methodology of Wang et al. [45], we
employ the Huber loss as the robust estimation function, given by:
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Figure 7. Kr , Rd
r , and T d

r (corresponding to rows 1 to 3) for six images (corresponding to columns 1 to 6) in the SPEED dataset when
ϵ = 0.1.

Figure 8. Kr , Rd
r , and T d

r (corresponding to rows 1 to 3) for six images (corresponding to columns 1 to 6) in the SPEED dataset when
ϵ = 0.4.

Conventional PnP algorithms are prone to inaccuracies from poorly localized keypoints. By integrating uncertainty
weights into our single-shot PnP approach, we enhance pose estimation accuracy and overcome the limitations of traditional
methods.



Figure 9. PΘ(xn|I), Kr , Rd
r , and T d

r (corresponding to rows 1 to 4) for eight objects (corresponding to columns 1 to 8) in some image of
the LMO dataset when ϵ = 0.1.

Figure 10. PΘ(xn|I), Kr , Rd
r , and T d

r (corresponding to rows 1 to 4) for eight objects (corresponding to columns 1 to 8) in some image
of the LMO dataset when ϵ = 0.4.
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