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6. Additional Results

Temporal modeling. The proposed ARN explicitly models

temporal dynamics. In the proposed HA module, predicate

queries aggregate temporal context Fvit to capture temporal

dependencies. The Fvit has shape [T,HW,d], this structure

supports temporal modeling across frames.

For temporal input, we adopt a fixed-length sliding

window of 8 frames. Longer videos are divided into

equal-length clips; if padding is needed, duplicated frames

are marked and excluded from loss computation, ensuring

training fairness. This input form avoids reference-frame

sampling (as in OED [37]), reduces the training time, and

supports full end-to-end optimization. We also evaluated

the sensitivity to temporal length (T = 6, 8, 12), and ob-

served only marginal differences (rows 5-7 of the Tab. 5

above), suggesting the model is robust to moderate changes

in temporal configuration.

To validate the contribution, we conducted a still-image

ablation by using spatial context Fvi instead of Fvit. Per-

formance drops after removing temporal modeling (see row

3&6 of Tab. 5 on left). Additionally, Some tail predicates

exhibit more decrease (such as “covered by” and “have it

on the back”) in Fig. 7. Meanwhile, Tab. 5 reports the static

baseline results of the prevailing methods, RelTR and OED.

ARN also outperforms both RelTR and OED under static

baseline settings.

Moreover, we report the mR@K results (see Tab. 6) for

PredCls task. In this setting, we must reduce the major-

ity of queries to align ground-truth with queries in PredCls

setting, ensuring semantic consistency. SGDet is primar-

ily used to validate our contributions, while PredCls results

demonstrate that ARN is also applicable to different types

of tasks.

Semantic cue modeling. ARN models triplet repre-

sentations by capturing context-aware relationships among

predicate subclasses, avoiding reliance on explicit statistical

co-occurrence priors (such as STKET [31]). This context-

driven approach reduces reliance on dataset-specific distri-

butions and mitigates. Furthermore, we incorporate CLIP’s

cross-modal semantic knowledge via textual alignment,

which enhances generalization—particularly for tail predi-

cates. We report the ablation study (row 4&6 in the Tab. 5).

7. Visualize

We visualize the predicate decoder attention map for the

predicted dynamic scene graph. As shown in Fig.8, The en-

Method R@10 R@20 R@50

RelTR [7] 20.9 24.6 28.2

OED [37] 33.4 41.3 49.0

Full model w/o temporal 36.8 45.8 53.2

Full model w/o CLIP 34.6 42.9 49.9

Full model (batch=6) 37.3 46.3 53.4

Full model (batch=8) 37.6 46.8 54.1
Full model (batch=12) 36.9 45.9 53.1

Table 5. Ablation Studies on temporal modeling and semantic cue

modeling under Recall@K metric.

Figure 7. Comparative per predicate class performance for

SGDET task. Results are in terms of mR@10 under “No con-

straint”.

Method mR@20 mR@50

TEMPURA[29] 85.1 98.0

OED[37] 89.6 97.2

TDˆ2[24] - 98.2

Ours 85.6 99.0

Table 6. Comparison results for PredCls task, in terms of Mean

Recall@K metric.

tity decoder employs two distinct query sets, corresponding

separately to subject and object detection. The heatmaps

generated by the queries with the highest confidence effec-

tively highlight the spatial regions associated with the sub-

ject and object, respectively (Columns 2 and 3). This means

that our model can accurately infer paired entity from im-

ages.

Meanwhile, as illustrated in columns 3 through 6 of Fig.

8, different branches of the predicate decoder focus on dis-

tinct image details to infer the corresponding predicate sub-

classes. Specifically, the heatmap of the 74-th query em-

phasizes the target object “cup”, whereas the 65-th query
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Figure 8. Visualization of attention maps of pair-wise entity fea-

ture and and different predicate subcategories.

Figure 9. Instance of failure case.

predominantly attends to the ”doorway”. This indicate sub-

tle variations in attention across different semantic regions

facilitate fine-grained semantic understanding.

8. Failure Cases
We analyzed the results and reported failure cases to sum-

marize the limitations of our model. A failure case is illus-

trated in Fig. 9. Although the generated scene graph cor-

rectly detects the object “floor” and accurately predicts all

its associated predicates, the object “broom” is misclassi-

fied. Despite the relatively clear visibility of the “floor”,

the “broom” is incorrectly recognized, possibly due to the

image’s low resolution. We conjecture that the model’s mis-

classification arises from insufficient visual clarity, causing

incorrect semantic categorization despite accurately attend-

ing to the object’s spatial region.

As shown in Fig. 10, to further analyze this failure case,

we visualize attention heatmaps of the two most confident

object queries from the failure case. It can be observed that

the model first successfully localizes and recognizes the ob-

ject “floor”, followed by identifying the object “shelf”, de-

spite it not being annotated in the current image. We con-
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Figure 10. Visualization of attention maps of the failure case.

jecture that such failure cases could potentially be improved

by the higher-resolution training data.


