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In this supplement, we show some other additional ex-
perimental results and details that are not present in the
main paper due to the page limitation.

A. Experiment

A.1. The Impact of Soft Labeling on Generic Tasks
In this section, we demonstrate that soft labeling does not
degrade performance on tasks that do not rely on numerical
tokens. Table A presents results on representative generic
benchmarks for both weak and strong baselines, consistent
with those used in Section 4.1. In this section, the model
is always fine-tuned on LLaVA-Mix. As shown in Table A,
incorporating soft labeling does not negatively affect per-
formance across tasks. This is expected, as equation (5),
when no numerical tokens are involved in training, the loss
naturally reduces to standard one-hot cross-entropy.

A.2. Baseline Results of Soft Labeling
In this section, we present the baseline results of our method
in comparison to state-of-the-art approaches in Section 4.3.
These results are obtained using the same datasets and set-
tings but replacing soft labels with one-hot hard labels. As
shown in Tables B, C, and D, soft labeling consistently
yields stable and significant improvements, even over strong
baselines.

A.3. Visualization
More visualizations are provided in Tables E, F and G to
highlight the effectiveness of soft labeling in improving nu-
merical prediction.

B. Supplementary Experimental Settings

B.1. Pretraining Data
In this section, we describe the pretraining data used in the
second stage.

Visual grounding For visual grounding, we sampled a
5M subset from the public GRIT-20M [17], referred to as

GRIT-5M. This data is used for an interleaved captioning
task, following the example template below.

{
’human’: ’<image>\n Please provide a

description for this image along
with the coordinates for every
object.’,

’gpt’: ’A man <bbox1> is sitting in a
bench <bbox2>.’

}

where <bbox1> and <bbox2> represent bounding box co-
ordinates [xmin, ymin, xmax, ymax] normalized to an inte-
ger in the range [0, 1000].

We use OFA [20] to generate pseudo captions for ground
truth bounding box annotations from the Objects365 [18],
LVIS [5], and COCO2017 [11] training sets. During this
process, we exclude examples from the COCO2017 train-
ing set that belong to the RefCOCO, RefCOCO+, and Re-
fCOCOg validation sets. A similar exclusion is applied
to the LVIS training set. After generating pseudo cap-
tions for each bounding box, the resulting 2M-example
dataset is used for visual grounding pretraining. We refer
to this dataset as “OGC-2M” (OFA-generated Grounding
Captions, 2M examples).

Additionally, based on another randomly sampled 5M
subset of LAION images, we use ScaleDet [2] to gener-
ate pseudo bounding boxes and associated descriptions for
each image, creating another synthetic visual grounding
dataset, referred to as “LAION-VG-5M” (LAION-based
Visual Grounding, 5M examples).

A sample template used for visual grounding is shown
below:

{
’human’: ’<image>\n Please provide the

bounding box coordinate of the
region this sentence describes: <
region caption>.’,

’gpt’: ’<bbox>.’
}
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Table A. The impact of soft labeling on generic tasks

Pretrain model Loss Finetune data VQAv2 [4] VisWiz [6] ScienceQA [13] TextVQA [19] POPE [10] MME [9]rand pop adv

LLaVA-7B Hard LLaVA-Mix 78.6 49.7 66.8 62.1 87.3 86.1 84.2 1510.7
Soft LLaVA-Mix 78.8 50.6 69.9 65.4 87.1 86.2 84.1 1517.3

LLaVA-13B Hard LLaVA-Mix 80.0 53.6 71.6 61.3 87.1 86.2 84.5 1531.3
Soft LLaVA-Mix 79.7 53.2 72.9 67.2 87.5 86.4 85.0 1538.1

Table B. The improvement over visual grounding baseline in Table 5 of the paper

Models
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test
Hard labeling -7B 91.0 93.9 87.0 86.1 91.5 79.5 89.0 89.4
Soft labeling -7B 91.8(+0.8) 94.7(+0.8) 88.9(+1.9) 87.0(+0.9) 92.7(+1.2) 80.0(+0.5) 89.6(+0.6) 89.5(+0.1)
Hard labeling -13B 92.1 94.6 88.7 86.9 92.5 82.1 89.7 89.6
Soft labeling -13B 92.7(+0.6) 95.0(+0.4) 89.0(+0.3) 87.6(+0.7) 92.7(+0.2) 82.3(+0.2) 89.8(+0.1) 90.0 (+0.4)

Table C. The improvement over chart understanding baseline in
Table 6 of the paper

Models ChartQA
Hard labeling 80.2
Soft labeling 81.5 (+1.3)

Table D. The improvement over object counting baseline in Table
7 of the paper

Models
TallyQA simple TallyQA complex

Acc.(↑) RMSE(↓) Acc.(↑) RMSE(↓)
Hard labeling 86.2 0.73 76.4 1.33
Soft labeling 86.6(+0.4) 0.56(-0.17) 77.2(+0.8) 1.06(-0.27)

where <region caption> represents the generated pseudo
caption.
Chart understanding For chart understanding, we use
a 3M mixture of public datasets, including PlotQA [16],
PMC2022 [3], UniChart [15], FigureQA [7], and Char-
tOCR [14], for pretraining. We refer to this dataset as Chart-
public-3M.

Additionally, we crawl 17M tables from the web and
convert each table into various charts or plots. We then
prompt DeepSeek-V2 [12] to generate QA questions for
pretraining. We refer to this dataset as Chart-synthesis-
17M.
Object counting For object counting, we reformat the pub-
lic object detection datasets, Objects365 [18] and OpenIm-
ages [8], for counting tasks. These datasets provide bound-
ing box and class annotations for each object, making it
straightforward to extract the count information for each
class. We then create a naive counting dataset with 3M ex-
amples (Counting-3M) and train the model using the fol-
lowing template:

{
’human’: ’<image>\n How many <class> in

this image?’,
’gpt’: ’<num>.’

}

In addition to this naive counting approach, we also train
the model using a Chain-of-Thought (CoT) style prompt, as
exemplified below:

{
’human’: ’<image>\n Please count the

number of <class>. Also, please
provide the bounding box coordinate
for each object as evidence before
giving the final count.’,

’gpt’: ’<bbox1>, <bbox2>. So, the total
number is <num>.’

}

where <class> is the object category and <num> is the
ground truth count. This forms another pretraining dataset,
Counting-CoT-3M.

Finally, for the 16M mixture data used to train the strong
LLaVA-13B baseline in Section 4.1, the dataset includes
LAION-5M, GRIT-5M, Chart-public-3M, and Counting-
3M. For the pretraining model used in Section 4.3, we uti-
lize all the collected data for each task. Specifically, for
visual grounding, we pretrain on a 12M mixture of GRIT-
5M, OGC-2M, and LAION-VG-5M. For chart understand-
ing, we pretrain on a 20M mixture of Chart-public-3M and
Chart-synthesis-17M. For object counting, we pretrain on a
6M mixture of Counting-3M and Counting-CoT-3M.

B.2. Finetuning Data
For RefCOCO, RefCOCO+, and RefCOCOg training data,
we train the model with grounding and expression referring



Image

Prompt Rocks that look like Winnie-the-poo, facing the camera wooden stool leg between cats and suitcases
Hard labeling red box red box
Soft labeling green box green box
Ground truth blue box blue box

Image

Prompt white chair at table the bottom end of a book with a leather book cover
Hard labeling red box red box
Soft labeling green box green box
Ground truth blue box blue box

Table E. Qualitative examples of soft labeling improvements in visual grounding

generation tasks. For ChartQA and TallyQA, we use the
official training sets.

B.3. Balanced TallyQA Testing Sets

TallyQA [1] is a commonly used benchmark dataset for
evaluating object counting. However, we identified at least
two significant issues with it. First, the ground-truth label
distribution is highly imbalanced, with counts of 1 and 2



Image

Prompt How many cars did Mini sell in Portugal as of 2019? What was the total amount of investments in sea port
infrastructure in 2010?

Hard labeling 2301 800
Soft labeling 2701 930.5
Ground truth 2601 965

Image

Prompt How many colors are used to represent the bar graph? How many points have 56 value in blue graph?
Hard labeling 3 2
Soft labeling 4 3
Ground truth 4 3

Table F. Qualitative examples of soft labeling improvements in chart understanding

dominating the testing samples (see Figure A). Second, the
ground-truth labels are noisy, ambiguous, and unverified, as
illustrated by the examples provided in Figure B. As a re-
sult, directly evaluating on TallyQA can lead to misleading
conclusions.

In order to evaluate and develop models on a trustwor-
thy validation set, we sampled two balanced subsets from
TallyQA’s simple and complex testing sets respectively, re-
ferred to as “TallyQA simple balanced” and “TallyQA com-
plex balanced”. TallyQA simple balanced contains 109 im-
ages with 7 examples per count from 0 to 15 (with 3 counts
having 6 examples). TallyQA complex balanced contains
96 images with 6 examples per count from 0 to 15. Each

image and annotation was manually checked to ensure ac-
curacy and clarity.

C. Potential Negative Societal Impacts

While our work focuses on improving numerical predic-
tion in MLLMs through soft labeling, its broader implica-
tions warrant consideration. Enhanced numerical reason-
ing could be leveraged in applications that inadvertently
contribute to misinformation, such as AI-generated con-
tent misrepresenting statistical data or object counts in crit-
ical domains like journalism or forensic analysis. To mit-
igate these risks, we suggest to implement robust verifi-



Image

Prompt How many cars did Mini sell in Portugal as of 2019? What was the total amount of investments in sea port
infrastructure in 2010?

Hard labeling 7 0
Soft labeling 11 5
Ground truth 13 5

Image

Prompt How many surf boards are there? How many donuts are visible?
Hard labeling 7 7
Soft labeling 5 14
Ground truth 5 15

Table G. Qualitative examples of soft labeling improvements in object counting

cation mechanisms that cross-check numerical predictions
with trusted external sources before they are used in ap-
plications like journalism or forensic analysis. This could
involve integrating fact-checking systems and leveraging

domain-specific knowledge to ensure predictions align with
established data.
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(a). Simple testing set
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(b). Complex testing set
Figure A. Count distribution on TallyQA simple and complext test-
ing sets
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Question: How many orange leaves are 
there?
Answer: 14

Question: How many water drops are in 
the picture?
Answer: 14

Question: How many roads are there?
Answer: 6

Figure B. Representative examples of TallyQA’s testing set with confusing or noisy annotations.


