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SUMMARY OF THE APPENDIX

This appendix contains additional experimental results
and discussions of our work, organized as:

• §S1 includes additional related work in for robotic system
safety.

• §S2 includes additional simulation results for black-box
attacks with different VLA-based models.

• §S3 outlines the experiment details.
• §S4 provides targeted attack supply results, investigat-

ing TMA across various action magnitudes and patch
sizes.

• §S5 explains tasks adopted for real-world experiments.
• §S6 outlines the parameter configurations used in robust-

ness evaluations.
• §S7 studies failure cases, providing an in-depth analysis

of the limitations of the proposed methods.
• §S8 supplies additional information on diagnostic exper-

iments.
• §S9 visualizes more qualitative results.
• §S10 provides discussions on future directions, high-

lighting potential areas for further research.

S1. Human-Robot Interaction Safety

Current human-robot interaction risks include physical dis-
comfort or injury [4, 5, 22]. Considering these risks, en-
suring safety during interactions becomes the top priority
as many literature outlined [24, 39, 67]. Existing robotic
safety strategies have primarily concentrated on mitigating
naturally occurring hazards [39]. These strategies can be
generally categorized into pre-collision or post-collision in-
terventions based on the timing of manage hazards [39].
Pre-collision approaches aim to prevent severe hazards by
implementing physical constraints, such as controlling force
and speed [28, 30], defining safety zones [68] and predicting
human actions to avoid potentially dangerous robot move-
ments [35, 36, 50]. Post-collision strategies, on the other
hand, focus on detection and response after a harmful action
has occurred [20, 48]. While there is substantial research
on robotic safety, the integration of AI into robotic policies
poses new challenges, where attackers can manipulate AI-
driven robot and execute malicious actions. Such threats
introduce additional layers of risk and complexity. In this
paper, we primarily focus on adversarial threats.

S2. Black-box Attack Results
This section examines the black-box settings of our proposed
attacks, focusing on evaluating the transferability of the
proposed patch attack. To this end, we include another VLA-
based model in our experiment: LLaRA [42].
Setup. For the LLaRA black-box experiment, we gen-
erate adversarial patch from simulation (i.e. openvla-7B-
libero-long [34] model with LIBERO Long [44] dataset)
and physcial (i.e. openvla-7B [34] model with BridgeData
V2 [69] dataset). These patches are then pasted at the top-left
corner of the image in the VIMA [32] scenario.

Table S1. LLaRA [42] black-box results. We report failure rates
(%) in VIMA [32] scenario. Simulation and physical represent
the same experiment setup as provided in §4.2. The FR (↑) is
highlighted in best and second best for each difficulty.

Task Difficulty
Setup Objective DoF L1 L2 L3 L4

LLaRA (D-inBC + Aux (D) + Oracle) 10.0 11.9 20.8 66.2

Simulation

Untargeted DoF1 15.8 20.8 29.2 67.5
Untargeted DoF1−3 15.8 16.5 27.5 70.0
UADA DoF1 15.0 18.8 27.1 71.3
UPA DoF1−3 15.9 19.1 28.8 71.1

Physical

Untargeted DoF1 13.8 23.5 26.2 76.4
Untargeted DoF1−3 14.2 26.4 27.6 74.7
UADA DoF1 16.3 27.2 28.5 76.1
UPA DoF1−3 12.7 25.6 28.7 72.1

Results. Across the four task difficulty tasks (L1-L4) in
VIMA [32], adversarial patches significantly increase the
failure rate (See Tab. S1) compared to the benign result of
LLaRA (D-inBC + Aux (D) + Oracle). For L1, the UPA
objective under the simulation setting increases the failure
rate by 6.3% (16.3% v.s. 10.0%). For L2, the adversarial
patch generated with Untargeted objective under physical
setup achieves the highest failure rate, increasing the faliure
rate by 15.3% (27.2% v.s. 11.9%). For L3, Untargeted Ac-
tion Discrepancy Attack (UADA) under the physical setting
demonstrates strong effectiveness, increasing the failure rate
by 8.4% (29.2% v.s. 20.8%). Finally, for L4, the physical
setting with the Untargeted objective effectively increases
the failure rate by 10.2% (76.4% v.s. 66.2%).

S3. Experiment Details
Attacking Details: Following [34], we apply scaling and
normalization for data preprocessing. The initial learning
rate is set to 2e−3, with the AdamW optimizer [47] with



a cosine annealing scheduler, including 20 warm-up iter-
ations. Training is conducted over 2e3 iterations with a
batch size of 6 and 50 inner-loop steps (see Algorithm 1).
The transformation parameters φ, ψ in Eq. 9 are set to 30
and 0.2 to simulate real-world perspective change. For all
three objectives, considering the trade-off between stealth
and performance observed in §S4, we set the patch size to
5%. For the hyperparameters α, β in Eq. 5, We conduct
grid search and tune α from [0.2, 0.4, 0.6, 0.8] and β from
[0.8, 0.6, 0.4, 0.2]. We select α = 0.8 and β = 0.2 based
on the validation set performance. Ablation studies w.r.t. α
and β are presented in §S8.
Evaluation Details: To rigorously assess the effectiveness
of attacks and minimize task failures arising from ran-
dom placement of adversarial patches that obscure critical
task-relevant objects, we identify base left-corner locations
for patch placement specific to each of the four tasks in
LIBERO [44]. For the Spatial task, the base point is set as
(120, 160). For the Object task, the base point is (30, 150).
Similarly, the base point is (15, 158) for the Goal task and
(5, 160) for the Long task. Additionally, to enhance repro-
ducibility by mitigating randomness, patches remain untrans-
formed during evaluation. This approach ensures a reliable
assessment of adversarial patches’ impact on task perfor-
mance.

S4. Targeted Attack supply Results

To further explore the action manipulation capabilities of
TMA, we conduct experiments targeting varying magnitudes
to assess its effectiveness across different scenarios.
Setup. We conduct experiments attack at DoF1 and utilize
various action magnitudes (i.e. 0.5,−0.5, 1.0,−1.0) as the
attack targets under simulation and physical settings.

Table S2. Different Magnitude results. Average failure rate (%)
is reported in 4 LIBERO simulation tasks. The initial AFR across
the four tasks is 23.5%.

Action Magnitude
Target Action Metric 0.5 -0.5 1.0 -1.0

Simulation L1 0.072 0.049 0.132 0.107
AFR 82.5 87.8 78.4 74.2

Physical L1 0.055 0.071 0.103 0.121
AFR 62.5 68.8 63.8 58.3

Results. The results are presented in Tab. S2. In the simula-
tion setup, the highest AFR (87.8%) is achieved at a target
magnitude of −0.5, representing a substantial increase of
64.3% compared to the initial AFR (87.8% v.s. 23.5%). Sim-
ilarly, in the physical setup, the target magnitude of −0.5
yields the highest AFR of 68.8%. These findings highlight
the superior manipulation capability and disruptive effective-
ness of TMA.

S5. Details of Real-world Experiments

We design four tasks to evaluate the impact of adversarial
samples on task failure rates in real-world scenarios. The
specific tasks include “put the carrot on the plate”, “put the
corn on the plate”, “put the carrot into the bowl”, and “flip
the pot upright”. To fairly evaluate the performance of our
attack, we only consider tasks where the VLA model oper-
ates successfully, excluding failure cases. We then introduce
the adversarial patch to assess its impact. This leads to an
average task failure rate of 43%, underscoring the significant
disruptive potential of adversarial samples on robotic tasks.

S6. More Robustness Evaluation Details

In this section, we provide a detailed parameter setting of
conducted robustness evaluation in §4.5. Specifically, we
assess the effectiveness of four commonly employed defense
techniques, including JPEG compression [18], bit-depth re-
duction [78], median blur [78], and Gaussian noise [80].
JPEG compression applies compression algorithms to the
input images prior to feeding them into the depth estimation
network, aiming to disrupt adversarial patterns. We test com-
pression quality levels ranging from 50 to 10, with lower
quality levels corresponding to higher compression rates.
Gaussian noise introduces zero-mean Gaussian noise to the
input image, leveraging its randomness to counteract the
structured nature of adversarial perturbations. The standard
deviation of the noise varies from 0.01 to 0.1, with higher
values introducing stronger noise. Median blur smooths the
image by replacing each pixel value with the median of its
surrounding pixels, using square kernel sizes from 3 to 9;
larger kernel sizes produce stronger smoothing effects. Bit-
depth reduction remaps the standard 8-bit depth of RGB
channels to smaller bit depths, reducing the color space and
potentially disrupting adversarial perturbations. We evaluate
cases with bit depths ranging from 6 bits to 3 bits. These de-
fense techniques are evaluated to understand the robustness
of our attack (results see in Fig. 5).

S7. Failure Case Analysis

This section analyzes the attack failure cases to gain deeper
insights into robot manipulation and highlight the critical
role of DoF targets on task failure.

We analyze most of attack failure cases and find that
certain DoFs are redundant in task execution. In Fig. S4,
the adversarial patch targeting DoF4 with a value of 0 fails
to disrupt the execution of the task. This failure can be
attributed to the fact that DoF4 controls the orientation along
the x-axis, which is redundant for grasping objects such
as bowls in the context of this task. As a result, attacks
targeting redundant DoF of the task [38] are less likely to
disrupt successful execution effectively. This observation



TASK (Goal): Turn on the stove

TASK (Object): Pick up the butter and place it in the basket

TASK (Spatial): Pick up the black bowl on the ramekin and place it

TASK (Long):  Pick up the book and place it in the back compartment of the caddy

Figure S1. UADA Qualitative Results The figure illustrates the 3D and 2D trajectories for both benign • and adversarial • scenarios,
highlighting the impact of the adversarial patch at each time step. We visualize the start point, marked as s, and the endpoint, marked as H.

underscores the importance of task-specific considerations
when designing adversarial attacks on robotic systems.

S8. More Diagnostic Experiment Details
We perform diagnostic experiments to assess the influence of
the hyperparameters α and β in UPA. As shown in Tab. S3,
when α = 0.8 and β = 0.2, UPA achieves the highest
average score of 93.4 across the four LIBERO [44] tasks
among all tested configurations. This result indicates that

Table S3. Parameter Diagnostic Results. Four distinct α and β
combination results. We report the average failure rate of four tasks
in LIBERO [44].

Setup α β AFR (%)

Simulation

0.2 0.8 86.5
0.4 0.6 90.5
0.6 0.4 89.4
0.8 0.2 93.4



TASK (Goal): Put the bowl on the plate

TASK (Object): Pick up the orange juice and place it in the basket

TASK (Spatial):  Pick up the black bowl next to the plate and place it on the plate

TASK (Long):  Put the yellow and white mug in the microwave and close it

Figure S2. UPA Qualitative Results The figure illustrates the 3D and 2D trajectories for both benign • and adversarial • scenarios,
highlighting the impact of the adversarial patch at each time step. We visualize the start point, marked as s, and the endpoint, marked as H

this specific combination optimally balances the trade-offs
between direction and magnitude adjustments governed by
α and β, establishing it as the most effective choice.

S9. More Qualitative Results
This section presents additional qualitative results for each of
the three attack objectives, complementing results in §4.3 and
offering deeper insights into the effectiveness of our adver-
sarial attacks. Specifically, the results of UADA, UPA, and

TMA are shown in Fig. S1, S2, and S3, respectively. These
qualitative results reveal significant deviations in the adver-
sarial trajectories of the proposed methods across all four
LIBERO tasks compared to the benign trajectories. Specifi-
cally, UADA induces substantial action discrepancies while
diverging sharply from the benign trajectory, highlighting its
disruptive impact. For UPA, a significant position deviation
is observed on the spatial task [44], where the adversarial
trajectory deviates significantly from the benign trajectory,



TASK (Goal): Put the bowl on top of the cabinet

TASK (Object): Pick up the bbq sauce and place it in the basket

TASK (Spatial):  Pick up the black bowl on the cookie box and place it on the plate

TASK (Long):  Put both the alphabet soup and the cream cheese box in the basket

Figure S3. TMA Qualitative Results The figure illustrates the 3D and 2D trajectories for both benign • and adversarial • scenarios,
highlighting the impact of the adversarial patch at each time step. We visualize the start point, marked as s, and the endpoint, marked as H

ultimately causing task failure. In contrast, the TMA ex-
hibits a smaller action amplitude, successfully manipulating
the robot’s behavior and resulting in task failure. These
findings highlight the distinct impacts and underlying mech-
anisms of the three attack methods.

S10. Future direction
Future research on attacks against VLA-based models can
potentially be conducted on two key objectives: enhancing
camouflage and ensuring practical feasibility. Improving

camouflage involves reducing detection probability by gen-
erating adversarial patches that seamlessly integrate with the
environment, leveraging natural patterns and context-aware
design. Furthermore, future efforts should avoid targeting re-
dundant DoF and instead concentrate on critical components
that are most likely to disrupt task performance. This can
be achieved by leveraging task-specific knowledge and em-
ploying advanced optimization techniques to maximize the
effectiveness of such attacks while aligning with real-world
physical constraints.



TASK (TMA): Pick up the black bowl on the ramekin and place it

Figure S4. Redundant DoF in a Failure Case. The first row is the benign scenario, while the second row illustrates the adversarial scenario.
In the adversarial scenario, the adversarial patch is generated by targeting DoF4 within the simulation setup. In this task, orientation (i.e.
DoF4−6) is identified as a redundant DoF since the task completion does not require any changes in orientation. As a result, the DoF4 attack,
which focuses on orientation, fails to disrupt the task’s execution.




