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Supplementary Material

The supplementary material provides a more comprehen-
sive evaluation of our proposed FICGen for degraded image
synthesis, which is organized as follows:
• Section 1: Dataset Introductions.
• Section 2: Implementation Details.
• Section 3: Additional Experimental Results.
• Section 4: Generative Visualizations.
• Section 5: Limitations and Future Work.

1. Dataset Introductions
To comprehensively evaluate the generative effectiveness of
our FICGen across diverse degraded conditions, we conduct
extensive experiments on five widely used benchmarks: Ex-
DARK [9], DIOR [8], RUOD [6], DAWN [7], and blurred
VOC 2012 [5]. Tab. 1 summarizes the key statistics of each
dataset, including the numbers of training and testing sam-
ples, total annotated instances, and degradation types. Two
considerations are noteworthy:

(1). Due to the relatively small size of DAWN, we em-
ploy conventional data augmentation techniques—such as
scaling, translation, and horizontal flipping—to expand the
training set from 590 to 5,544 samples. Additionally, given
the extreme scarcity of “bicycle” instances in DAWN, this
category is omitted from the evaluation.

(2). Following [14], we generate blur kernels on the fly
to construct the blurred VOC 2012 [5] dataset, which is used
to inspect the adaptability of FICGen to mild degradations.
Collectively, these datasets span a broad spectrum of degra-
dation types, from severe low-light, underwater, aerial, and
adverse weather conditions (i.e., rain, fog, snow, sandstorms)
to mild blur, thereby enabling a thorough evaluation of the
generalizability and robustness of FICGen in real-world de-
graded scenarios.

2. Implementation Details
As mentioned in the main paper, our FICGen is built upon
the pre-trained Stable Diffusion model (v1.5) [13] and is
incorporated into the mid-level (8× 8) feature layers and the
lowest-resolution (16×16) decoder layers of the denoising U-
Net. All images are processed at a fixed resolution of 512×
512 during the training and inference phases. To evaluate

Dataset Train Test Total Instances Classes
Degradation

mode
ExDARK [9] 5,145 2,218 7,363 23,710 12 low-light

RUOD [6] 9,800 4,200 14,000 74,904 10 underwater
DIOR [8] 5,862 11,738 17,600 192,472 20 aerial

DAWN [7] 5,544 410 5,954 43,869 5 adverse weather
VOC 2012 [5] 10,582 1,449 12,031 33,149 20 blur

Table 1. An overview of five degraded datasets.

its generative capacity for densely distributed instances in
degraded contexts, we restrict each image to at most N = 15
objects, in line with the AeroGen setting [16]. For a fair
comparison, all competing L2I methods (i.e., MIGC [19],
CC-Diff [18]) are trained under identical configurations (i.e.,
learning rate, training epochs, and the number of instances
per image).

For fidelity evaluation, the same number of real and syn-
thetic images are resized to a fixed resolution of 512×512,
we then employ the library “torch-fidelity” [11] to compute
the FID scores based on a pre-trained Inception-V3 model.
It should be noted that, to ensure a fair comparison with
AeroGen (CVPR 2025), the FID scores for remote sensing
scenarios are computed using an Inception-V3 model fine-
tuned on the RSICD [10] dataset, following the procedure
in [17]. For alignment evaluation, we utilize pre-trained
downstream detectors, i.e., Faster R-CNN [12] and Cascade
R-CNN [1], to predict detection results, which are compared
against ground-truth bounding boxes and classes to com-
pute alignment metrics. For trainability evaluation, we
construct a synthetic training set equal in size to the real
dataset, which serves as an auxiliary resource to enhance
downstream detectors. To be specific, ground-truth bound-
ing boxes (bboxes) from the training split of the degraded
datasets are used as layout conditions for generating syn-
thetic images. Following [3], we first discard bboxes smaller
than 0.2% of the image area, then apply data augmentation
by randomly flipping bboxes with a probability of 0.8 and
shifting them within 128 pixels. The generated synthetic
images are combined with the real ones across various train-
ing settings. All experiments follow the default training and
testing protocols of MMDetection 2.25.3 [2], with all images
uniformly resized to 512× 512 and trained under a standard
1× schedule.



Detector Method FID↓ Object Detection (AP) for Sampled Classes /% mAP↑ AP50 ↑ AP75 ↑
DIOR-H [8] windmill airport stadium ballfield airplane golffield

Faster R-CNN Oracle - 29.0 32.2 26.7 50.2 33.5 34.7 33.4 55.6 35.0
Faster R-CNN MIGC [19] 31.64 3.4 33.6 18.0 32.4 6.8 43.8 21.8 38.4 17.5
Faster R-CNN CC-Diff [18] 30.88 5.6 31.4 21.4 44.0 9.5 50.6 23.6 42.4 21.4
Faster R-CNN FICGen (ours) 31.25 16.0 33.5 16.9 50.0 23.8 51.2 27.6 48.7 27.6

RUOD [6] starfish echinus fish scallop corals turtle
Faster R-CNN Oracle - 45.9 44.1 41.9 37.5 45.9 67.8 50.5 80.2 54.4
Faster R-CNN MIGC [19] 26.50 20.6 12.2 14.9 13.5 22.8 48.2 27.2 54.1 24.6
Faster R-CNN CC-Diff [18] 25.21 22.7 13.3 16.8 12.5 25.6 50.7 29.7 58.4 27.9
Faster R-CNN FICGen (ours) 25.10 32.1 28.5 25.0 23.7 33.7 52.5 37.0 68.6 36.5

blurred VOC 2012 [5] aeroplane boat cow bottle sheep person
Faster R-CNN Oracle - 43.7 26.9 24.3 19.7 27.9 34.5 31.5 56.5 32.4
Faster R-CNN MIGC [19] 62.66 42.4 27.0 23.9 20.2 21.8 30.3 34.7 65.8 33.1
Faster R-CNN CC-Diff [18] 62.20 44.0 28.6 26.5 19.6 27.1 32.5 36.7 67.6 36.3
Faster R-CNN FICGen (ours) 58.02 49.0 36.1 36.2 23.2 35.4 35.4 40.7 70.3 42.7

VOC 2012 [5] aeroplane boat cow bottle sheep person
Faster R-CNN Oracle - 57.1 42.9 48.7 33.2 46.1 48.1 48.3 76.8 52.5
Faster R-CNN AeroGen [16] 45.21 38.1 27.7 30.9 28.7 35.4 29.5 36.8 65.7 36.4
Faster R-CNN MIGC [19] 50.60 47.3 33.9 44.9 24.1 35.0 34.3 45.1 78.5 47.4
Faster R-CNN CC-Diff [18] 48.70 55.0 36.2 46.4 27.2 37.8 35.5 47.9 79.1 52.0
Faster R-CNN FICGen (ours) 48.93 57.7 47.9 49.9 37.4 45.9 44.6 54.2 83.5 60.2

ExDARK [9] bicycle motorbike boat car cup bottle
Cascade R-CNN Oracle - 48.5 33.6 30.4 40.2 29.0 32.1 37.2 65.8 37.8
Cascade R-CNN MIGC [19] 45.76 45.9 25.4 26.6 28.8 21.9 21.5 32.4 63.5 29.5
Cascade R-CNN CC-Diff [18] 44.26 48.5 32.5 30.6 33.0 23.3 25.9 35.1 65.6 34.1
Cascade R-CNN FICGen (ours) 42.40 57.3 38.5 29.4 43.9 35.8 34.8 42.5 73.0 45.1

DAWN [7] motorcycle person bus truck car -
Cascade R-CNN Oracle - 19.4 20.6 27.0 26.7 42.8 - 27.3 46.4 26.3
Cascade R-CNN MIGC [19] 70.10 9.3 7.2 17.0 14.6 14.8 - 12.6 32.3 8.6
Cascade R-CNN CC-Diff [18] 68.56 13.2 9.4 19.4 17.6 19.0 - 15.7 33.9 14.8
Cascade R-CNN FICGen (ours) 68.31 25.3 20.3 19.8 19.6 28.2 - 22.6 44.3 21.5

Table 2. Quantitative comparison of generative fidelity and alignment on five degraded datasets (DIOR-H [8], ExDARK [9], RUOD [6],
DAWN [7], and blurred VOC 2012 [5]) and one natural image dataset (VOC 2012 [5]). The performance is evaluated using off-the-shelf
detectors Faster R-CNN (R50) [12] and Cascade R-CNN (R50) [1] on synthetic test images generated by different L2I methods. “Oracle”
denotes the real test set baseline (i.e., upper bound). The top-2 performers are marked in red and underlined.

3. Additional Experimental Results
3.1. More Quantitative Evaluations
Alignment. Tab. 2 reports a comprehensive evaluation of
generative fidelity (FID) and alignment (detection AP) across
five degraded benchmarks (DIOR-H [8], ExDARK [9],
RUOD [6], DAWN [7], and blurred VOC 2012 [5]) and
one natural benchmark (VOC 2012 [5]). The alignment
is assessed using two pre-trained detectors, Faster R-CNN
(R50) [12] and Cascade R-CNN (R50) [1], enabling a fair
comparison with prior L2I approaches. Overall, our FIC-
Gen consistently delivers superior alignment and fidelity,
attaining a 27.6 mAP on DIOR-H, outperforming MIGC
(21.8) and CC-Diff (23.6) by 5.8 and 4.0 points, respectively.
The gains are particularly pronounced on challenging se-
mantic categories, such as “windmill” (16.0 vs. 3.4/5.6) and
“airplane” (23.8 vs. 6.8/9.5).

Similar improvements are observed across other bench-
marks. On RUOD, which involves dense underwater in-
stances, FICGen achieves a 37.0 mAP, surpassing CC-Diff

by 7.3 and MIGC by 9.8, owing to its frequency-inspired
contextual disentanglement that mitigates the submersion
of underwater objects against homogeneous aquatic back-
grounds. On blurred VOC 2012, our method elevates AP for
almost all categories such as “cow” (36.2 vs. 23.9/26.5) and
“sheep” (35.4 vs. 21.8/27.1), resulting in a 40.7 mAP, which
is a clear lead over CC-Diff (36.7) and MIGC (34.7). For Ex-
DARK and DAWN, which represent extreme low-light and
adverse-weather conditions, FICGen delivers notable boosts
in categories with attenuated high-frequency cues, such as
“motorbike” (38.5 vs. 25.4/32.5) and “motorcycle” (25.3 vs.
9.3/13.2), achieving 42.5 and 22.6 mAP, respectively.

Crucially, these improvements can be attributed to FIC-
Gen’s contextual disentanglement mechanism, which effec-
tively separates high-frequency instance details from the
dominant low-frequency surroundings, while simultaneously
preserving essential degraded contextual characteristics such
as illumination and texture.

Trainability. Following the trainability protocol in [3],
we leverage ground-truth bounding boxes from the degraded



Figure 1. Qualitative comparison of natural images (VOC 2012 [5]) generated by different L2I methods. Zoom in for more detail.

datasets as layout inputs to synthesize additional training
images, which are combined with real samples to effectively
double the training set size. As summarized in Tabs. 3– 5,
our proposed FICGen consistently delivers superior gains
in downstream detection performance across both degraded
and natural scenarios. On the ExDARK benchmark, FICGen
achieves the highest mean AP, with notable improvements
for semantic categories such as “motorbike” (+3.8) relative
to the Oracle upper bound and “people” (+1.6) over the clos-
est CC-Diff. On DAWN, despite the small scale of available
data, FICGen yields competitive boosts, including +4.9 for
“motorcycle” and +4.4 for “bus.” More importantly, on natu-
ral VOC 2012, which reflects the generalization capability,
FICGen achieves the best overall mean AP (50.5), surpass-
ing CC-Diff by +0.9 and MIGC by +1.1. These downstream
trainability results confirm that the degraded images synthe-
sized by FICGen not only alleviate the scarcity of training
data in adverse conditions but also serve as effective auxiliary
resources to enhance the accuracy of downstream detectors.

Robust Control. To further investigate the generative

Figure 2. Further qualitative comparison with CC-Diff on ExDARK
and generalization to oriented layout inputs [4].

robustness of FICGen towards spatially entangled instances
under degraded conditions, Tab. 6 presents a detailed align-
ment comparison on four benchmarks with varying occlusion
levels. Each dataset is divided into three occlusion levels,
i.e., Sparse, Partial, and Heavy, according to the number of
instances and their mutual occlusion measured by Intersec-
tion over Union. A pre-trained Faster R-CNN (R50) is then
used to assess the alignment between the generated instances
and their corresponding layouts at each occlusion level.

As reported in Tab. 6, our FICGen demonstrates remark-
able robustness across varying occlusion levels, significantly



category Oracle MIGC [19] CC-Diff [18] FICGen category Oracle MIGC [19] CC-Diff [18] FICGen
bicycle 46.4 48.3 49.6 47.8 chair 25.4 26.8 26.8 27.5

boat 30.2 31.1 29.7 31.7 cup 28.6 28.2 28.7 29.6
bottle 31.8 31.6 31.1 32.8 dog 44.1 47.9 47.6 48.5
bus 56.8 60.8 59.8 59.9 motorbike 33.3 34.4 34.1 37.1
car 38.1 38.3 38.4 38.8 people 32.9 32.5 32.4 34.0
cat 41.8 41.4 42.0 42.4 table 20.6 24.1 24.1 22.5

All (mAP %) 35.8 37.1 37.0 37.7

Table 3. Detection accuracy (%) per class on the ExDARK test set using Faster R-CNN (R50) [12], trained on 5.1k real and 5.1k synthetic
images generated by different L2I methods.

category Oracle MIGC [19] CC-Diff [18] FICGen
motorcycle 18.0 23.0 20.0 22.9

person 19.6 19.5 19.5 20.2
bus 21.8 21.6 27.8 26.2

truck 23.4 19.6 21.6 20.5
car 41.1 39.4 40.0 39.6

All (mAP %) 24.8 24.6 25.8 25.9

Table 4. Detection accuracy (%) per class on the DAWN test set
using Faster R-CNN (R50) [12], trained on 5.5k real and 5.5k
synthetic images generated by different L2I methods.

Figure 3. Visualization results generated by FICGen conditioned
on augmented geometric layouts.

outperforming prior L2I approaches. On sparsely occluded
cases, where inter-instance interference is minimal, FICGen
already yields clear gains, achieving a mAP of 44.8 on DIOR-
H and 63.8 on ExDARK, surpassing CC-Diff by 6.1 and 3.2,
respectively. These improvements become more pronounced
under partial occlusion, where overlapping instances intro-
duce complex spatial entanglement. For example, on RUOD,
FICGen attains a 46.5 mAP, outperforming MIGC and CC-
Diff by 16.1 and 8.3, respectively. The benefits are most
substantial under heavy occlusion, where conventional meth-
ods often suffer from “object omission and merging” due
to severe spatial collisions. On DAWN and RUOD, which
contain up to 55% and 59% heavily occluded instances,
FICGen secures 20.0 and 33.5 mAP, nearly doubling the
performance of MIGC (11.1 and 17.8) and substantially out-

Figure 4. Visualization results of the continuous generation of
instance interactivity (i.e., addition, removal, transform and weather
change) by our FICGen on the DAWN dataset.

performing CC-Diff (13.2 and 26.3). Collectively, these
results underline FICGen’s ability to faithfully adhere to
user-specified layouts and mitigate occlusion-induced dis-
tortions, thereby generating structurally consistent degraded
images that benefit downstream perception tasks.

Inference Efficiency Analysis. Tab. 7 reports the number
of trainable parameters and the per-image inference time for
identical settings on the DIOR dataset. FICGen contains
only around a third of the parameters of AeroGen (∼304M
vs. ∼905M). Compared with CC-Diff, FICGen achieves
the highest mAP while maintaining a comparable overhead,
requiring only an additional 40M trainable parameters and
incurring a modest 2-second inference delay.

3.2. More Qualitative Evaluations
Fig. 1 presents a qualitative comparison of generation results
produced by different L2I methods on natural scenes from
VOC 2012. Existing approaches exhibit notable limitations
in generative quality, often suffering from hallucination arti-
facts such as missing objects and incorrect merging. For in-
stance, AeroGen generates synthesized images whose visual
characteristics deviate substantially from real-world counter-
parts, while MIGC and CC-Diff frequently merge adjacent
objects, such as two horses being fused into one (second
column) or three potted plants collapsing into two or
overflowing excessively (third column). Moreover, when



category Oracle MIGC [19] CC-Diff [18] FICGen category Oracle MIGC [19] CC-Diff [18] FICGen
aeroplane 57.1 58.0 59.6 59.2 diningtable 42.8 44.5 42.3 45.2

bicycle 51.6 54.3 53.1 53.6 dog 59.6 59.8 60.9 61.9
bird 52.2 53.6 54.1 55.7 horse 54.9 55.7 55.2 55.4
boat 42.9 42.5 44.4 47.3 motorbike 56.2 58.7 59.1 57.8

bottle 33.2 34.7 36.3 34.9 person 48.1 47.9 48.1 48.9
bus 59.4 60.1 60.1 62.2 pottedplant 26.9 25.8 26.0 27.9
car 43.0 43.6 44.6 45.9 sheep 46.1 46.7 45.7 47.3
cat 62.2 61.5 62.1 63.0 sofa 43.6 47.9 47.5 47.6

chair 26.5 28.7 28.9 29.6 train 59.9 61.4 62.0 61.6
cow 48.7 51.6 51.0 51.0 tvmonitor 51.4 50.9 50.7 53.1

All (mAP %) 48.3 49.4 49.6 50.5

Table 5. Detection accuracy (%) per class on natural VOC 2012 test set using Faster R-CNN (R50) [12], trained on 10.6k real and 10.6k
synthetic images generated by different L2I methods.

Dataset Method Sparse (33%/39%/23%/27%) Partial (21%/15%/18%/18%) Heavy (46%/46%/59%/55%)

mAP AP50 AP75 mAP AP50 AP75 mAP AP50 AP75

DIOR-H [8]

Oracle 45.9 70.2 50.9 35.2 53.3 38.6 28.7 47.6 30.7
MIGC [19] 33.1 64.4 30.7 19.1 38.8 16.7 16.1 33.9 12.9

CC-Diff [18] 38.7 66.3 40.7 24.4 42.9 25.0 19.5 36.5 19.1
FICGen 44.8 72.4 48.8 30.1 49.2 32.5 24.1 42.6 24.9

ExDARK [9]

Oracle 55.6 87.4 65.7 42.6 73.4 46.3 28.7 58.6 25.3
MIGC [19] 59.3 95.1 68.0 44.7 85.8 43.1 24.9 58.5 16.7

CC-Diff [18] 60.6 95.1 72.2 47.7 84.3 49.0 26.1 58.5 19.3
FICGen 63.8 95.3 75.8 54.0 89.0 59.8 32.1 65.3 28.0

RUOD [6]

Oracle 56.2 81.2 64.3 53.0 81.6 58.5 48.1 79.6 51.0
MIGC [19] 40.1 75.2 39.1 30.4 63.7 25.8 17.8 39.5 13.4

CC-Diff [18] 47.8 80.6 51.3 38.2 73.1 38.3 26.3 54.2 23.0
FICGen 54.3 85.6 62.2 46.5 80.4 49.6 33.5 65.3 31.1

DAWN [7]

Oracle 36.1 56.5 35.2 34.9 56.3 42.9 23.8 45.3 21.4
MIGC [19] 25.3 52.3 21.3 17.8 38.8 13.0 11.1 29.9 5.7

CC-Diff [18] 38.2 76.7 33.6 26.4 50.9 26.3 13.2 32.1 9.2
FICGen 44.5 71.7 48.1 34.5 54.0 40.7 20.0 40.8 16.1

Table 6. Quantitative comparison of alignment across four datasets under three occlusion degrees, with detection evaluated by Faster R-CNN
(R50). The numbers in brackets represent the proportion of each occlusion level within the dataset.

Method Trainable Params (M) Inf.Time (s/img) Inf. Mem (GB) mAP
CC-Diff ∼ 261 8 ∼ 12.2 26.4
AeroGen ∼ 905 8 ∼ 13.9 29.8

FICGen (ours) ∼ 304 10 ∼ 12.6 31.2

Table 7. Comparison of trainable parameters and inference effi-
ciency with AeroGen [16] and CC-Diff [18].

processing densely distributed objects, such as the array of
bottles in column six, these methods often fail to preserve
accurate spatial arrangement and object counts. In contrast,
although primarily designed for degraded image generation,
our FICGen demonstrates superior performance in natural
scenarios, particularly in maintaining object quantity, spatial
positioning, and scale. Specifically, it accurately reproduces
highly overlapping objects, including the two horses in
the second column and six closely packed chairs in the

fourth column, while preserving fidelity for small-scale
targets, exemplified by the chair in the first column.

In the additional low-light results shown in Fig. 2, CC-
Diff suffers from the illusion of merging three “buses”
into one and omitting dense “motorbike” instances,
whereas our FICGen effectively resolves such contextual
illusion issues. What’s more, as shown in the second row
of Fig. 2, FICGen exhibits strong adaptability to oriented
layout controls, ensuring consistent generation quality under
such constraints.

Figs. 3 and 4 present the generative results on layout
manipulation. Fig. 3 demonstrates that FICGen maintains
robust generation for augmented layouts, such as flipping
and translation, while Fig. 4 shows that FICGen consis-
tently produces coherent content under continuous layout
modifications, including object addition (i.e., “add a car”),



Figure 5. Architectural details of the proposed Adaptive Spatial-
Frequency Aggregation Module (ASFA).

Fusion airplane mAP AP50 AP75

Depth-wise 23.8 27.6 48.7 27.6
Point-wise 16.0 26.4 48.1 26.4

Table 8. The ablation results of different fusion strategies for SAM
and FAM outputs.

removal (i.e., “delete two cars”), categorical transforma-
tion (i.e., “truck to car”), and weather changes (i.e., “snowy,
rainy”), highlighting its flexibility and user-controllable in-
teractivity. These qualitative results further underscore the
advantages of FICGen in degraded image generation.

Fig. 6 presents the detection results of Faster R-CNN
wi/wo FICGen for auxiliary training. The synthesized de-
graded images from FICGen notably improve the detector’s
localization accuracy, particularly for remote sensing in-
stances such as “baseballfield” and “people” in low-light
conditions.

3.3. More Architecture Details
Fig. 5 illustrates the architectural details of the proposed
Adaptive Spatial-Frequency Aggregation (ASFA) module.
Inspired by [15], we adopt a dual-branch spatial-frequency
aggregation strategy to integrate the disentangled degraded
representations in the latent space. The spatial branch cap-
tures contextual dependencies, including semantic correla-
tions and degradation similarities among various objects.
Concurrently, the frequency branch focuses on fine-grained
attributes such as edge structures and texture details. Next,
we further fuse the dual-stream outputs of the SAM and FAM
at a lower cost by using a single-layer depthwise separable
convolution to enhance local perception within different de-
graded regions. Finally, adaptive weights for context-aware
aggregation are obtained via a softmax operation. As shown
in Tab. 8, this fusion strategy substantially outperforms the
point-wise alternative, particularly for small objects like “air-

Figure 6. Detection results of Faster R-CNN (R50) trained on real
images vs. real & FICGen-generated images.

plane”, where AP improves from 16.0 to 23.8. These results
highlight the effectiveness of our adaptive aggregation in
capturing both global dependencies and local structural cues
under complex degradation scenarios.

4. Generative Visualizations

Figs. 8– 12 further showcase the controllable generation ca-
pabilities of FICGen, highlighting its ability to address a
diverse range of degraded environments, including mild blur,
low illumination, underwater, remote sensing, and severe
adverse weather conditions. These visualizations emphasize
the adaptability and robustness of FICGen in accurately rep-
resenting the distinctive visual and semantic characteristics
of each degraded context.

In particular, Fig. 8 presents synthetic results on the
blurred VOC 2012 dataset, illustrating FICGen’s capabil-
ity to handle mild degradations while preserving semantic
integrity for categories such as “bird”, “cat”, and “sheep”,
without introducing noticeable artifacts or structural incon-
sistencies. Moreover, even under moderate motion blur,
FICGen successfully renders distinguishable shapes for ob-
jects like “train” and “horse”, thereby retaining perceptible
fine-grained blurred details for both foreground objects and
surrounding backgrounds.

Figs. 9 and 10 present that our FICGen excels in replicat-
ing the severe conditions of low-illumination and underwater
scenarios, while preserving the realism of complex light-
ing and distortion effects, ultimately delivering semantically
aligned and visually realistic degraded samples. Fig. 11 fur-
ther showcases synthetic results on remote sensing scenes,
underscoring FICGen’s capability to generate dense object
clusters while preserving coherent spatial relationships be-
tween foreground instances and their surroundings. In partic-
ular, FICGen accurately renders densely distributed targets
such as “ship” in port areas, while maintaining the correct
number of objects. Moreover, it captures contextual con-



Figure 7. Failure cases of FICGen, where red dashed boxes denote
the missing instances.

sistency by generating “vehicles” precisely aligned along
“overpasses”, ensuring that the synthesized objects seam-
lessly integrate with the underlying scene structure.

Fig. 12 presents synthetic samples generated by FICGen
under four adverse weather conditions—fog, snow, sand,
and rain—on the DAWN dataset, illustrating its strong gen-
eralization across visually diverse and challenging degraded
scenarios. We can see that FICGen effectively captures the
distinctive visual properties of each weather type: i.e., the
diffuse scattering and visibility attenuation of “fog”. Beyond
instance-level fidelity, FICGen demonstrates the capability to
restore critical scene-level elements, such as lane markings
and road boundaries, even when they are partially occluded
or obscured by rain or sand. Notably, in the “sand” condition,
FICGen generates a highly realistic visual atmosphere, re-
producing the chromatic desaturation observed in authentic
sandstorm scenarios.

5. Limitations and Future Work
Fig. 7 illustrates the failure case, where FICGen struggles
to synthesize high-resolution remote sensing images with
precise representations of small objects such as “vehicles.”
This limitation primarily arises from the inherent downsam-
pling operations in latent diffusion models, which suppress
fine-grained structural details. Future work will focus on
extending the frequency-inspired paradigm to 3D content
generation, such as camouflaged video synthesis, and ex-
ploring richer control modalities beyond bounding boxes,
including semantic masks, to enhance the precision and con-
trollability of contextual generation in degraded scenarios.
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Figure 8. Visualization results generated by our FICGen under the mild blur (blurred VOC 2012), with geometric layouts and corresponding
object categories superimposed on the generated images.

Figure 9. Visualization results generated by our FICGen under low-light conditions (ExDARK [9]), with geometric layouts and corresponding
object categories superimposed on the generated images.
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Figure 10. Visualization results generated by our FICGen under the underwater scene (RUOD [6]), with geometric layouts and corresponding
object categories superimposed on the generated images.

Figure 11. Visualization results generated by our FICGen under the remote sensing scene (DIOR [8]), with geometric layouts and
corresponding object categories superimposed on the generated images.
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Figure 12. Visualization results generated by our FICGen under the adverse weather condition (DAWN [7]), with geometric layouts and
corresponding object categories superimposed on the generated images.
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