Appendix
FOLDER: Accelerating Multi-modal Large Language Models with Enhanced
Performance

Haicheng Wang!?#*, Zhemeng Yu'?*, Gabriele Spadaro®3, Chen Ju*, Victor Quétu?,
Shuai Xiao**™, Enzo Tartaglione®™
! Paris Elite Institute of Technology, Shanghai Jiao Tong University 2 University of Turin
2 LTCI, Télécom Paris, Institut Polytechnique de Paris * Taobao & Tmall Group of Alibaba

anakin_skywalker@sjtu.edu.cn, shuai.xsh@alibaba-inc.com, enzo.tartaglione@telecom-paris.fr

In this appendix, we first provide more details about our
FOLDER module and experiment setup in Sec. 1. Then
we offer more results on empirical studies (Sec. 2.1), and
on different models and modalities (Sec. 2.2, Sec. 2.3,
Sec. 2.4), as well as ablation studies including the propa-
gation effect on MLLMs (Sec. 2.5) and the choice of aggre-
gation strategies (Sec. 2.6). Finally we demonstrate how to
reproduce our results (Sec. 3).

1. Implementation Details

1.1. FOLDER Architecture for MLLMs

FOLDER is designed as a plug-and-play module plugged
in transformer-based vision encoders of Multi-modal Large
Language Models (MLLMs), to reduce the output visual
token sequence length. FOLDER is a generalized token
merging module, that can adapt any matching function or
aggregation methods, allowing any number of tokens to be
merged in any block without constraint. More specifically,
we applied FOLDER between the residual connection of
attention block and the MLP. To minimize the calculation
overhead for token grouping, we upgrade the bipartite soft
matching algorithm to meet the demand for arbitrary num-
ber of merging.

Merging Position ToMe [1] or Turbo [7] applies an uni-
form and progressive token merging, with constant num-
ber of reduction on each block to accelerate the vision en-
coder (ViT [4], CLIP [12], BLIP [8] etc.). Unlike them,
we here focus on the acceleration of MLLMs, where the
computational cost is concentrated in the LLM. Indeed, for
LLaVA1.5-13B [10], the total time to generate the 1st-token
is around 0.37s on V100-32G, while the vision encoder part
is around 0.03s, which is less than 1/12. For all the experi-
ments in the main paper, we only reduce tokens in the output
layer/block of vision encoder (LLaVA1.5 [10] uses the im-
age feature of the second last layer, while Minigpt4v2 [2]

uses only the last layer). The ablation on reduction partition
between blocks conducted on MLLMs is provided in Tab. 4.
Similar to the result on BLIP in the main paper, reducing to-
kens only in the last layer yields the best result, which is in
line with our empirical observation.

Matching Function In FOLDER algorithm, we need to
choose a matching function that can evaluate the similarity
between tokens, so that we aggregate tokens with similar
semantic meanings. ToMe [1] directly calculates the cosine
similarity between tokens’ key value in attention calculation
(K taking the mean on multi-head), while Turbo [7] lever-
age a more delicate matching function that considers both
similarity between tokens and the semantic importance of
tokens (attention contribution for the class token). For the
experiment in the main paper, we adopt the matching func-
tion of Turbo, by replacing the metric of key value by token
itself. To minimize the implementation effort, we offer an
extremely simplified version that only evaluate the cosine
similarity between tokens in the last layer (between atten-
tion and MLP), and the performance gap is minor (please
refer to the ablation studies in section 2.6). This allows the
adaptation to be a ready-to-use on any MLLM visual back-
bones.

Merging Order To realize the average merging that is inde-
pendent of the folding order, we make one little adjustment.
For example, if we have two folding operations, which asks
for token (x1,x3,x5) to be merged as zg in the first fold,
and (xg, x7, xg) to be merged in the second fold. We would
like to average on (x1, s, x5, Tg, 7), without taking the
merging order into account.

Lmerge = an(xla x3,Ts5, Te, 1'7)

To do this, we use a size list to note the number of to-
kens that contributed to obtaining the merged token (for the
merged token xg after the first fold, the corresponding size
is 3), then we weight the token by their size during the fol-
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Method Ratio Up EN Star MME VQA Bench MU POPE BenchIMG QA QA Avg
Original 0% 1x 9.2 244 6314 38.5 26.4 18.7 62.3 31.8 48.6 38.8 33.0
Turbo 509 1.3%x 8.7 21.0  692.1 35.0 34.7 20.7 52.7 30.5 50.4 37.6 32.6
Ours ¢ 1.3x 9.4 22,5 7103 38.4 34.6 24.0 56.2 313 50.7 38.6 34.1
Turbo 60% 1.4x 9.1 22.1 6745 36.7 343 23.0 51.0 30.4 50.3 38.8 33.0
Ours ¢ 1.4x 13.8 243 8599 43.8 35.6 23.1 63.3 33.7 53.5 39.9 374
Turbo 0% 1.6 8.7 22.0 651.8 36.3 344 20.7 447 30.7 50.1 35.0 31.5
Ours ¢ 1.6x 9.3 225 666.8 37.6 35.5 22.8 56.6 31.2 51.5 37.9 339
Table 1. Results on Minigpt4v2. We highlight the best result on each benchmark under the same reduction ratio.
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xg = avg(z1, T3, T5)

Tmerge = (3X$8+$6+1‘7)/(3+1+1)

In this way, we realize average merging regardless of the
folding order. We release the code on BLIP and LLaVA.
For more implementation details, please refer to the code
along with this file.

Order Rearrange and Size Compensation Since all the
visual tokens will be assigned new positional encoding in-
side LLM, we want to preserve the relative position between
tokens. In the algorithm presented in the main paper, we
partition A and B crossly, so when concatenating A’ and B/,
we recover the original order of each token. Besides, several
tokens are merged as one during this process, which may
degrade the importance score in LLM attention. To miti-
gate this behavior, we save the size of each merged token
and multiply them by 1 + log(size) when outputting from
vision backbone. We adopt size compensation and order
rearrange for simplified version of FOLDER. More details
can be found in the code repository.

1.2. Training Details of LLaVA1.5-13B

To test the effectiveness of FOLDER for training phase,
we train LLaVA1.5-13B following the same procedures
(pretrain-sft two-stage training, dataset, training parame-
ters) detailed in LLaVAL.5 repository, with FOLDER in-
serted in the visual backbone of LLaVA1l.5. The whole
training process is conducted on 8 A100-80G GPUs and the
GPU hour in Tab. 6 in the main paper is evaluated by the
actual training time multiplying the number of GPUs.

Figure 1. Minimum Number of Tokens with Energy ¢z Across
Blocks on ViT Large. We evaluate on 3 different ¢t for every
block on ViT large 24 blocks.

1.3. Reproduction Details of Baselines

We reproduce several SOTA MLLM token reduction meth-
ods [3, 7, 13—16]. For FastV, we drop visual tokens on the
3rd layer of LLM. For sparsevlm [16], we set scale=13.5
and bias=0. For pyramiddrop [15], we set the layer list
to be [4,12,20] and reduction ratio list to be [0.3,0.2,0.1]
for both training and inference. For LLaVA-Prumerge [13],
we use static 1/4 reduction for fair comparison. For Cross-
get [14] and Turbo [7], we adopt uniform reduction across
all layers, and calculate the reduction ratio based on the re-
maining tokens at the output. LLaVA-Prumergeand Cross-
get results are reproduced using official checkpoints while
pyramiddrop and pixel-shuffle are trained by us (the others
are training-free methods).

2. More Experiments

2.1. Results on Empirical Studies

In addition to the empirical results on ViT-B, we also con-
duct such experiments on ViT-S and ViT-L to demonstrate
the generality of such phenomenon. As shown in Fig. 1,
2,3 and 4, on models of various sizes, the trend of Energy &
EMD distance with respect to blocks is similar. Combined
with the results in Tab. 4, we can conclude that merging on
last layers is the best choice.
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Method Ratio EN sar  ™™E VoA Bench MU VQA BenchiMG QA  TOPE Ave
Original-7B 0% 62.8 32.7 13389 78.8 35.6 322 524 60.2 68.1 79.7 55.0
Uniform 60.1 315 1301.6 78.0 349 24.7 344 57.8 67.2 85.0 52.0
Last-3 66% 60.9 31.1 13124 77.4 36.4 31.6 419 58.5 67.9 85.7 53.9
Last-2 61.1 304 1353.1 76.9 359 314 416 58.4 67.9 85.7 53.8
Last-1 61.4 30.3  1350.0 77.9 39.2 31.3 46.1 59.7 68.3 85.4 54.8
Original-13B 0% 66.6 309 1371.1 77.0 36.1 340 549 59.4 68.8 86.4 56.3
Uniform 64.7 312 1168.3 76.3 25.9 333 479 58.5 70.5 85.5 53.6
Last-3 66% 66.5 31.6  1369.4 77.2 34.5 34.8 50.1 58.7 70.9 86.5 55.9
Last-2 65.7 32,5 1332.0 77.2 34.6 34.5 51.7 58.6 70.3 86.0 55.9
Last-1 65.8 31.7  1366.9 77.3 33.8 350 526 58.8 70.7 86.1 56.1

Table 4. Propagation Effect on LLaVA1.5 7B/13B. We evaluate different merging positions using LLaVA1.5 under 66% reduction ratio.
Last-n refers to uniform reduction in last n blocks, uniform refers to uniform reduction in every block.
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Method Ratio EN sar  MME VoA Bench MU VQA  Benchimg QA  POPE Ave
Original 7B 0% 628 327 13389 788 356 322 524 60.2 68.1 797 550
Direct Drop 39.1 207 9305 644 201 40 115 56 453 779 374

Weighted Avg | 66% 60.5 309 13323 777 38.8 313 46.6 59.8 68.2 856 547
Avg 614 303 13500 779 39.2 313 461 59.7 68.3 854 548
Original-13B 0% 66.6 309 1371.1  77.0 36.1 340 549 594 688 864 563
Direct Drop 31 206 10826 655 182 193 299 158 73 795 40.8
Weighted Avg | 66% 65.3 313 13742 774 35.0 346 525 583 70.3 858 560
Avg 65.8 317 13669 773 338 350 526 58.8 70.7 861  56.1

Table 5. Aggregation method on LLaVA1.5 7B/13B. We test the performance of 3 aggregation operations. For fair comparison, we adopt

the aggregation only in the last block.
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Figure 2. EMD Distance Between Reduced and Original Out-
put Distributions under 3 Reduction Ratios on ViT Large. We
compare the EMD distance by exerting token reduction on differ-
ent blocks on ViT large 24 blocks.

2.2. Results on Minigpt-4v2

In Tab. 1, we also evaluate FOLDER on another MLLM:
Minigpt4v2. With a reduction ratio up to 60%, our method
achieves an overall performance improvement compared to
the original model, with an increase of more than 40% on
MME and MMBench. Even in this case, by merging in the
last block, FOLDER outperforms Turbo. This implies that,
in addition to speed enhancement, FOLDER can potentially
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Figure 3. Minimum Number of Tokens with Energy ¢t Across
Blocks on ViT Small. We evaluate on 3 different ¢ for every
block on ViT small 12 blocks.

be a plug-and-play performance booster, reducing the noise
occurring in long token sequences.

2.3. Results on Non-LLaVA models

In Tab 2, we offer results on Flamingo and IDEFICS to
show our generalizability, which is even better than that on
LLaVA-like models.



Reduct | MMBench MM A-OK Hallusion MM  OCR SEED Science
Method Ratio EN sar  ™™E VoA Bench MU VQA BenchiMG QA  TOPE Ave
Original-7B 0% 62.8 32.7 13389 78.8 35.6 322 524 60.2 68.1 79.7 55.0
a=0 60.9 30.7  1354.1 76.9 39.2 31.5 453 59.8 68.0 85.9 54.7
a=3 66% 60.8 30.7 13414 77.7 39.1 312 464 59.8 68.5 85.7 54.8
a=5 61.4 30.3  1350.0 71.9 39.2 31.3 46.1 59.7 68.3 85.4 54.8
Metric = K 61.3 303 13549 78.1 394 324 452 59.6 68.3 85.3 54.8
Original-13B 0% 66.6 309 1371.1 77.0 36.1 340 549 59.4 68.8 86.4 56.3
a=0 65.3 31.7 13514 77.9 33.9 352 525 58.5 70.7 86.1 56.0
a=3 66% 65.1 319 13839 77.4 34.7 34.8 52.6 58.4 70.4 86.0 56.1
a=5 65.8 31.7  1366.9 77.3 33.8 350 526 58.8 70.7 86.1 56.1
Metric = K 65.4 31.7 13595 77.8 33.1 340 514 58.2 70.9 85.4 55.6

Table 6. Ablation for Matching Functions on LLaVA1.5 7B/13B. We evaluate various matching functions evolved from ToMe [1] and
Turbo [7]. The default setting is « = 5 in Eq. | and metric as token itself. Metric = K means that we use the key value to calculate cosine

similarity between tokens.

Reduct | MMBench MM A-OK  Hallusion MM  OCR SEED Science
Method Ratio EN sar M™E  VQA  Bench MU VQA BenchiMg QA  TOPE  Ave
Original-7B 0% 62.8 327 13389 78.8 35.6 322 52.4 60.2 68.1 79.7 55.0
Simplified 66% 60.7 30.8 1341.1 76.4 38.8 31.6 464 60.1 68.4 86.3 54.7
Ours-standard ¢ 61.4 303 1350.0 779 39.2 31.3 46.1 59.7 68.3 85.4 54.8
Original-13B 0% 66.6 309 1371.1 77.0 36.1 34.0 54.9 59.4 68.8 86.4 56.3
Simplified 66% 65.4 319 13579 71.7 34.3 34.7 52.2 58.6 70.8 86.1 56.0
Ours-standard ‘ 65.8 31.7  1366.9 71.3 33.8 35.0 52.6 58.8 70.7 86.1 56.1

Table 7. Simplified Version of FOLDER on LLaVA1.5 7B/13B. By directly applying FOLDER on the output of visual encoder, we
achieve similar performance with respect to standard FOLDER, while greatly reduce the implementation effort.

70 —e— Reduction Ratio: 0.75
Reduction Ratio: 0.67
Reduction Ratio: 0.6
60
[a)]
2 50
40 S~
—
30
2 4 6 8 10

Block

Figure 4. EMD Distance Between Reduced and Original Out-
put Distributions under 3 Reduction Ratios on ViT Small. We
compare the EMD distance by exerting token reduction on differ-
ent blocks on ViT small 12 blocks.

2.4. Results on 3D Points Cloud

We also apply FOLDER on PointLLM for 3D point cloud
in Tab. 3.

2.5. Ablation Study on Propagation Effect

In Tab. 8 of the main paper, we study the propagation effect
on BLIP [8]. In Tab. 4, we offer results on LLaVA1.5-13B,
with 4 different reduction partitions (keep the number of
remaining tokens unchanged). Reduction in the last layer

remains the best strategy for MLLMs of different sizes. Al-
though more subtle partitions can be explored, merging only
in the last layer is a simple and safe choice.

2.6. Ablation Study on Aggregation Strategy

Aggregation Method. In Tab. 5, we evaluate the three
aggregation methods on MLLMs discussed in the main
paper. More specifically, we conduct the experiment on
LLaVA1.5-7B and 13B to fully compare these aggregation
methods. As shown in Tab. 5, there is a significant reduc-
tion in performance using direct drop, especially on dense
tasks like OCRVQA. This suggests that direct drop may
cause severe information loss. While for merging strate-
gies, weighted average on norm and vanilla average merg-
ing both shows superior performance over direct dropping.
The performance gap between is minor. For simplicity, we
use average merging in as our default aggregation method.
Matching Function. In addition to the aggregation
method, we also conduct experiments on matching func-
tions. Turbo [7] proposed a generalized matching function
that considers both mutual redundancy (token similarity)
and semantic values (attention importance), which is for-
mulated as:

E=R - aoZ, (1)

where R the similarity between tokens and Z token’s at-
tention contribution with respect to the class token. « is a
weighted hyper-parameter which we take @ = 5 (a rough



approximation for & = seq-len//100). To calculate the
similarity between tokens, ToMe and Turbo [7] leverage
the K (key) in the attention by taking mean on multi-head
dimension, thus to save computational cost and enhance
slightly the performance. In our experiment, we simply
take the token itself as the metric to calculate the cosine
similarity for simplicity. In Tab. 6, we ablate on different
matching functions. By using various « values and metrics
on LLaVA1.5-7B and 13B, the performance rests similar,
indicating the robustness of FOLDER.

Simplified Version. Furthermore, in order to avoid
all potential difficulties in implementing FOLDER (e.g.,
FOLDER needs to be inserted into vision backbone, which
requires to adapt for different vision encoder’s architecture),
we introduce one extremely simplified version that only ap-
plies FOLDER on the output visual sequence from vision
backbone, regardless of the model architecture. In Tab. 7,
we show that such a simplified version achieves almost the
same performance as standard ones, further showing the sta-
bility and universality of our proposed method.

3. Reproducibility

Along with this file, we offer the implementation of
complete FOLDER on BLIP and LLaVAl.5, equipped
with VLMEvalKit [5] to evaluate on various MLLM
benchmarks.  We also offer examples of simplified
FOLDER inserted in 3 SOTA MLLMs ( VILAL.5 [9], We-
POINTS1.5 [11], VITAL.5 [6]). For more details, please
refer to the provided code.
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