Appendix

Failure Cases Are Better Learned But Boundary Says Sorry: Facilitating Smooth Perception Change
for Accuracy-Robustness Trade-Off in Adversarial Training

A. Experimental Setup

We employ common experimental settings aligned with previous AT works. For the outer minimization, we adopt SGD
optimizer with momentum 0.9, batch size 128, weight decay 5x 10~* and initial learning rate 0.1. In Section 5.2, following
Pang et al. [31], which explores various settings for AT, we train 110 epochs with learning rate decay by a factor of 0.1 at 100
and 105 epochs for better experimental efficiency. While in Section 5.3, we adopt 200 training epochs with learning rate decay
at 100 and 150 epochs to ensure fairness in comparison with the current SOTAs that also use this default setting. For the inner
maximization, under the ¢, threat model with perturbation budget ¢ = 8/255, we employ PGD-10 adversary with step size
« = 2/255 and maximum optimization step 10, except for TRADES which crafts adversarial samples through maximizing
its KL regularization term [58]. While under the ¢5 threat model with maximal perturbation budget ¢ = 128/255, we have
step size & = 32/255. In the main experiments, following their original papers, we set the regularization parameter A = 6
for TRADES and MART while A = 1 for Consistency-AT and ours, and fix our specific hyper-parameter & = 0.5. Other
values of these parameters are further considered by our ablation studies in Section 5.4. Then, for the data pre-processing,
we normalize benign images into [0, 1], and employ standard data augmentations, including random crop with 4-pixel zero
padding and random horizontal flip with 50% of probability.

The experiments are conducted on Ubuntu 22.04 OS with Intel Xeon Gold 6226R @ 2.90GHz CPU, 512GB RAM and 8 x
NVIDIA GeForce RTX 3090 GPUs, and are implemented with Python 3.8.19 and PyTorch 1.11.0+cul13.

B. Proof of Theorems

In this section, we supplement the proofs of Theorem 1 and Theorem 2 in Section 4.1, which respectively demonstrate the
effectiveness of the proposed RPAT from the perspectives of local linearity [12] and Lipschitz regularization [1, 11, 21, 33].

B.1. Proof of Theorem 1

Theorem 1 (Section 4.1) . Let H be the Hessian Matrix such that Hy,(x) = V2hg(x), then with the new optimization

objective of Robust Perception, we have:
VA, AT-Hp,(x)- A = 0. 4)

Proof.

Based on Definition 1 in Section 4.1, for any robust model 0 satisfies the proposed Robust Perception, we have:
Vae[0,1], he(x+a-A)—hg(x) =a- (hg(x+ A) — he(x)). (5)
Expand the hg(x + « - A) term of Equation (5) as a Taylor series:
2
e .
B+ - A) = ho(x) +a Juy(0) - A+ G- AT Hy,y (x) - A+ 0(0?), ©)
and also expand the hg(x + A) term of Equation (5) as a Taylor series:

ho(x + A) = he(x) + Jp,(x) - A+ % AT Hy, (%) - A+ 0(|A]P). @)

Substitute Equation (6) and Equation (7) back into Equation (5), we have:
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Vae0,1], a-Jyy(x)-A+ %-AT-Hhe(x) A+ 0(”) = - (Jny(x) - A+ % AT Hpg(x) - A+ O(|A]%), ®)

which can be then simplified as:
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Vael0,1], ( ) AT Hpy(x) - A+ 0(®) — a- O(|A]P) = 0. ©)
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Equation (9) directly means:
AT Hpy(x)- A =0, O(a®) =0, and O(|A]*)) =0, (10)

otherwise we can easily find a specific value of « except 0 and 1 that violates Equation (9).

Therefore, we have Theorem 1 proven, meaning that Robust Perception limits the second-order and higher-order nonlinear
effects within the adversarial perturbation to the model perception, just as we suggested in Section 4.1.

B.2. Proof of Theorem 2

Theorem 2 (Section 4.1) . Let J be the Jacobian Matrix such that Jy,(x) = Vxheg(x), then with the new optimization
objective of Robust Perception, we have:

Va € [0,1], Jno(x+ a-A) = Jpy(x), an

then with || - || spec denoting the Spectral Norm and ~y being any micro value, given || Jp, (x + a - A) — Jhy (X)||spec < 7, the
function hg(x) can be referred to as K -Lipschitz with the Lipschitz constant K upper-bounded by:

K < sup || Jhe (%) |lspec +7- (12)

Proof.

Provided the result in Equation (10), we can simplify the Taylor series at x in Equation (6) as:
ho(x+a-A) = hg(x)+ a- Jp,(x) - A. (13)

For hg(x 4+ A), this time we expand it at x + a - A (i.e., this is the point where the derivatives are considered), such that the
variable here becomes A — - A = (1 — «) - A, with which we have:

ho(x+A) ~ ho(x+a-A) + (1 — a)Ji,(x+a-A)- A, (14)

in which the higher-order terms are also ignored based on Equation (10).

Then substitute Equation (13) into Equation (14), we have:
ho(x+ A) m hg(x) + o Jpp(x) - A+ (1 — ) Jpy (x+ - A) - A, (15)
Recall the definition of Robust Perception in Equation (5), substitute Equation (13) and Equation (15) into it, we have:
Vae[0,1], a-Jp,(x) - Axa- (o Jh(x) A4+ (1 —a)Jp,(x+a-A)-A), (16)

which can be directly simplified as:
Va e [0,1], Jny(x) = Jne(x+a-A). a7

This result tells us the proposed Robust Perception encourages the stability in Jacobian along with the adversarial perturba-
tion, as given in Equation (11) of Theorem 2.

Based on Equation (17), let us assume that the change in Jacobian along with the perturbation satisfies:
[ Jho (X 4 - A) = Jpg (X)lspec < Vs (18)

where v is a micro value and Spectral Norm || - ||spec indicates the maximum singular value of the matrix.

Then, according to the triangular inequality of Spectral Norm, we have:
(| Jhg (x + - A)||5pec = 1o (X)HSpec < [ Jhe(x + - A) = Jp, (X)HSpec <. (19)
Since the local Lipschitz constant Kjoe(-) can be denoted with Jacobian as || Jp, (+)||spec [30], we further have:

Klocal(x +a- A) - ||Jh9 (X)Hspec <7, (20)



with which we can finally represent the upper bound of the global Lipschitz constant K under the adversarial perturbation as:

K = sup Klocal(x + o A) S sup ||Jhg (X)”spec + Y, (21)

just as Equation (12) of Theorem 2.

With Theorem 2, we can refer to the function hg(x) learned under Robust Perception as K-Lipschitz with an upper-bounded
global Lipschitz constant, which is expected to limit the complexity of the decision boundary as suggested in Section 4.1.

C. Additional Results

This section supplements more experimental results to further support our ideas and statements in this work, including more
empirical evidence for our motivation in Appendix C.1, different options of the proxy for model perception in Appendix C.2,
and further comparison with the current SOTA in Appendix C.3.

C.1. More Empirical Evidence for Motivation

Corresponding to the proof-of-concept experiment illustrated in Figure 2, which is conducted on CIFAR-10 with ResNet-
18, we provide more empirical evidence respectively on CIFAR-100 with PreActResNet-18 and Tiny-ImageNet with
WideResNet-34-10, as illustrated in Figure 5, both of which show similar patterns to Figure 2.
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(a) Results on CIFAR-100 with PreActResNet-18. (b) Results on Tiny-ImageNet with WideResNet-34-10.

Figure 5. More empirical evidence for our motivation, aligned with the proof-of-concept results in Figure 2.

C.2. Various Proxies for Model Perception

Regarding the proxy of model perception in our RPAT, embeddings from other layers than logits could also be alternatives
for comparing perception consistency. In this section, we further provide the results with two additional proxies, respectively
the embeddings from the second-to-last layer and the third-to-last layer, as demonstrated in Table 5. It can be found that there
is no significant difference in the final performance, which also reflects the universality and stability of our new AT objective.
Thus, for simplicity, we uniformly utilize /logits as our proxy in the main experiments.

Table 5. Comparison of different proxies for model perception in calculating the perception consistency. The results are acquired on
CIFAR-10 with ResNet-18 and ¢, norm.

Method / Proxy Clean AA Mean NRR
PGD-AT (i.e., the baseline as in Table 1) 8292 46.74 64.83 59.78

logits (i.e., the current proxy as in Table 1) 83.20 48.00 65.60 60.88
Embedding from the second-to-last layer 83.19 47.89 65.54 60.79
Embedding from the third-to-last layer 83.14 48.02 65.58 60.88

+ RPAT
(Ours)




C.3. Further Comparison with Current SOTA

Except from the ones considered in Section 5.3, ReBAT also suggests another additional training strategy, which is to utilize
a stronger training-time adversary with larger perturbation budgets (e.g., ¢ = 10/255) after the first learning rate decay.
Although this seems not completely aligned with the default fairness setting of AT, we still supplement comparison with it,
as ReBAT is the current SOTA method on the accuracy-robustness trade-off problem. The additional consideration of such a
stronger adversary is marked by “$” in Table 6.

Table 6. Comparison of the proposed RPATT " with the current SOTA, ReBAT, under stronger training adversary on CIFAR-10 with
PreActResNet-18 and £, norm.

Clean PGD-20 AA
Method Mean NRR
best final best final best final

ReBAT 82.09 82.05 55.77 56.03 50.72 50.70 66.405 62.700
RPATtt  82.63 8276 5627 56.02 51.00 50.71 66.815 63.072

ReBAT$S 77.57 78.82 56.79 5646 5091 51.09 64240 61.474
RPATT$ 7925 79.47 57.04 56.52 5125 51.09 65250 62.246

The results demonstrate that, although the stronger training adversary strategy helps further improve the robustness, its
destruction on the clean accuracy is more significant. As a consequence, for the Mean and NRR scores measuring the
trade-off, adopting such a strategy rather leads to worse results. Therefore, we would not suggest using this strategy for the
proposed RPAT method by default.
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