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1. Proofs
1.1. Derivation of Eq.(5)
Assuming there exists a constant M such that ∥∇li(θ)∥ ≤
M , we have:
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Since F ′(d) =
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, we can get that:

F(d) ≤ MF ′(d)

Therefore, F ′(d) is proportional to an upper bound of F(d),
with the proportionality constant being M .

1.2. Derivation of Eq.(6)
Now, we have the following optimization objective:

min
d
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, s.t. ∥d∥2 ≤ r2 (1)

where ∇li(θ) represents the gradient of each objective func-
tion li(θ) and d is the update direction for all objectives. r
is the radius of the boundary space. Notably, the objec-
tive function above is non-decreasing for any feasible d.
Therefore, for any d in the boundary space, there must ex-
ist a point in the same direction but on the boundary. For
the maximization of utility, we can conclude that the opti-
mal d∗ must lie on the boundary, i.e., ∥d∗∥ = r. To solve
the extremum problem above, we apply Lagrange multiplier
method in the following steps:
• Construct Lagrange function. By introducing the La-

grange multiplier λ, we can obtain the Lagrangian func-
tion:
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• Take the derivative and set it equal to zero. Take the
partial derivatives of λ and d, set them equal to zero:
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• Solve the equation. From the first formula in Eq.(3), we
can obtain:

d = 1
2λ
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Here, λ is set to 1
2 for simplicity following Nash-MTL,

which has no impact on the final results. It indicates that
the update direction d can be regarded as a weighted sum
of gradient ∇li(θ). The weight is allocated depending on
the dot product of the gradient and the current update direc-
tion. Through this method, we can find the optimal update
direction within the boundary space.

2. Dataset Details
2.1. Construction of Training Set
About the two public datasets we use, CosmicMan is specif-
ically designed for generating highly realistic and photore-
alistic human images, containing 6 million high-resolution
real-world human images and detailed descriptions of 115
million diverse attributes, which helps the model learn a
wide range of human details and scene information. Body-
Hands focuses on human poses, particularly the torso and
hands, providing additional information on the structure
of the human body. To enable effective training, we uti-
lize state-of-the-art detectors to filter low-resolution images
(smaller than 1024×1024) or unrelated images (containing
little information about humans). Furthermore, we apply vi-
sual language models (VLMs) to achieve accurate and con-
cise image caption generation. For each sample annotation,
in addition to the text description, we add extra positional
information based on the detection results for our target op-
timization regions, namely the faces and hands, while also
providing pose and depth information for the controllable
generation.

2.2. Construction of Validation Set
To provide a more comprehensive evaluation of the model’s
performance in human image generation, we construct our
validation set based on the large-scale human-centric image
dataset proposed by MoLE, which mainly includes the fol-
lowing characteristics:



• Brief and clear text prompts: All text prompts are pro-
cessed through VLMs and manual review to remove in-
formation unrelated to the image content, such as com-
plex adjectives and clauses, retaining only the key infor-
mation related to humans. For example: ”A woman in
dress standing in front of a building”, ”A man in a suit
and tie standing with his hands on his hips”. This ensures
that the model does not generate content inconsistent with
the target, thereby avoiding a negative impact on the final
evaluation.

• Diverse content and scenarios: To cover human im-
ages in various scenarios and content as comprehensively
as possible, we randomly sample 5k images and their
corresponding text descriptions from the 23411 selected
human-in-the-scene images for each batch testing. This
includes different human races, genders, and scenarios.

• High-quality ground truth images: To ensure the qual-
ity of the image data, we filter the existing dataset based
on resolution, clarity, and content relevance.

3. Implementation Details
We choose Stable Diffusion XL as the base model since
it already possesses prior knowledge about human image
generation through pre-training but has major limitations in
generating local hand and face details. Regarding the gen-
eration of local masks for the faces and hands, we first gen-
erate mask images using the pre-annotated bounding box
information from the dataset. Then, we apply the same pre-
processing methods as used for the original image, includ-
ing resizing, cropping, and random flipping. Our code is de-
veloped based on Diffusers. For the LoRA fine-tuning, we
set the rank to 256 and train it for 50k steps with a learning
rate at 1e-5. The Adam optimizer is deployed. Compared to
the default settings, we mainly increase the rank size while
reducing the learning rate, as we expect the model to learn
detailed content better. For the ControlNet fine-tuning, we
train it 60k steps with a learning rate set to 1e-5. It is worth
mentioning that we apply a dropout probability of 0.3 to the
input control conditions to enhance robustness and general-
ization. The overall image resolution is set as 1024 × 1024.
Our resource-friendly training and evaluation processes can
be implemented on a single 80G NVIDIA A800 GPU.

4. More Evaluation Details
4.1. More Quantitative Comparisons
In addition to comparing the image quality generated by the
models, we also conduct experiments on memory usage and
inference speed. Specifically, both our LoRA-based method
and MoLE are deployed on SDXL as the backbone model.
Therefore, here we primarily present the extra memory con-
sumption and inference time required per image (set infer-
ence steps to 30 and employ UniPCMultistepScheduler as

the sampler). The results are demonstrated in Tab.1. In par-

Methods Extra Memory Usage Inference Time
MoLE 2611.75MB ×3
Ours 1413.12MB ×1.4

Table 1. Comparisons between MoLE and our method in terms of
memory usage and inference speed.

ticular, MoLE uses two low-rank modules and a gate net-
work to achieve adaptive generation. Our method, on the
other hand, achieves joint optimization of multiple objec-
tives through a single low-rank module, thereby reducing
memory requirements by nearly half and also significantly
reducing the time required for inference.

4.2. User Study Details
The user study involves 50 participants to evaluate 100 pairs
of images in total with corresponding annotations generated
by different methods. Images with irrelevant content are
pre-filtered and removed. In complying with the quantita-
tive analysis, participants are asked to rate them according
to the following two criteria, respectively:
• Overall quality: assessing the general appearance, real-

ism, and coherence of the entire image.
• Regional quality: evaluating specific regions of interest

(faces and hands) for detail, plausibility, and naturalness.
We note that all the participants are unaware of which image
corresponds to which method and rank the images based
on their preferences. For the highest rank in each group,
we record its score as 1 and the rest as 0. In addition, for
tied rankings, we assign a score of 0.5 to each. Finally, we
separately calculate the scores for each method based on
the two aforementioned criteria and visualize them using
the bar chart, which provides a more comprehensive and
intuitive reflection of the image generation quality.

4.3. More Ablation Studies
For our LoRA-based method, we conduct additional abla-
tion studies on the choice of rank and multi-objective opti-
mization strategy. The results are demonstrated in Tab.3 of
the main article and in Tab.2, respectively.
LoRA Rank. As for the choice of LoRA rank, we exper-
iment with three settings: 64, 128, and 256. Generally, a
larger rank means more trainable parameters are introduced,
enhancing the model’s adaptability to new data. However,
this also increases computational and memory demands, po-
tentially leading to over-fitting. Therefore, we aim to iden-
tify the most suitable parameter choice for human image
generation through comparative experiments.
Multi-Objective Optimization Strategy. We further de-
ploy several classic multi-task learning strategies during
the training process and conduct related comparative ex-
periments. Specifically, Linear Scalarization (LS), Dy-



namic Weigth Average (DWA), Uncertainty Weighting
(UW), Random Loss Weighting (RLW), Scale-Invariant
(SI), Nash-MTL, and Minimum Potential Delay Fairness
Grad (MPD-FairGrad) are implemented here. Notably, SI
utilizes the proportional fairness principle. Results in Tab.2
demonstrate that utilizing the MPD fairness principle to the
multi-objective optimization for human image generation
can achieve a more balanced performance.

Image Quality Regional Quality
Strategy

HPS(%) ↑ IR(%) ↑ FID ↓ Hand Confi. ↑ Face Confi. ↑
LS 32.60 153.23 47.22 93.70 84.82
DWA 32.53 152.58 46.34 93.40 84.86
UW 32.61 152.82 47.42 93.76 84.15
RLW 32.58 154.56 47.90 93.80 84.24
SI 32.52 154.58 46.01 93.99 85.31
Nash-MTL 32.63 153.11 47.50 93.68 84.33
MPD-FairGrad 32.73 154.60 46.11 94.03 85.34

Table 2. Ablation results for the choice of multi-objective opti-
mization strategy.

5. More Visualizations
More visualization results compared to existing methods are
demonstrated in Fig.1, Fig.2, Fig.3, and Fig.4. In addition to
the baseline methods mentioned in our paper, we also com-
pare two close-source methods for human image generation
called HanDiffuser and HyperHuman. Here, we extract ex-
ample images from their paper for comparison.



Figure 1. Comparison with HanDiffuser.

Figure 2. Comparison with HyperHuman.



Figure 3. Comparison with general T2I methods.



Figure 4. Comparison with controllable methods.
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