
Summary of the Appendix
This appendix contains additional details for the paper
“Federated Continuous Category Discovery and Learning”,
including implementation details, additional experiment re-
sults, discussion of limitations, and broader impact. The
implementation code can be found in the attached supple-
mentary materials. This appendix is organized as follows:
• Section A introduces the data splitting strategy (Sec-

tion A.1), details of the baseline implementation (Sec-
tion A.2), and detailed settings of the ablation study (Sec-
tion A.3).

• Section B provides additional results for 1) experiments
in the centralized setting (Section B.1); 2) experiments
with various degrees of heterogeneity in FC2DL (Sec-
tion B.2); 3) experiments with various data partitions
(Section B.3); 4) sensitivity analysis of hyper-parameters
(Section B.4); 5) experiments with a large number of par-
ticipants (Section B.5); 6) experiments of launching data
reconstruction attacks for verifying GPA’s characteristic
of privacy-preserving (Section B.6); 7) results of perfor-
mance forgetting on known categories (Section B.7); and
8) experiments on pre-trained vision transformers (Sec-
tion B.8).

• Section C presents the detailed optimization pipeline of
GPA.

• Section D discusses the limitations of the proposed meth-
ods and the possible future directions.

• Section E illustrates the potential broader impact of this
work in the real world.

A. Implementation Details
A.1. Data splitting settings
CIFAR-100 contains two separate sets – one is a training
set consisting of 500 samples for each class, and the other
is used for testing with 100 samples for each class. For
Tiny-ImageNet and ImageNet-S, we follow FCIL [10] to
select the ending 50 and 100 samples per class for test-
ing, respectively, while the rest 500 samples are used for
training. As for the usage of CUB200, StanfordCars, and
Herbarium 19, we also follow their default data splitting to
prepare the training and testing sets. To simulate the practi-
cal non-IID setting, the training samples of each participant
are drawn independently with class labels following a cat-
egorical distribution over C = CL + CU classes, which
can be parameterized by a vector q (qi → 0, i ↑ [1, C] and
↓q↓1 = 1). And we draw q ↔ Dir(ω, p) from a Dirichlet
Distribution [19], where p is a prior class distribution over
C classes and ω > 0 controls the data heterogeneity among
FL participants. A smaller ω leads to more heterogeneous
data distributions among participants, and we set ω = 0.1
for all FC2DL experiments in the main paper, while the cen-
tralized training setting can be regarded as the case when

ω ↗ +↘.

Table 5. Performance comparison between GPA and other base-
lines in FC2DL with two fine-grained dataset. Only one novel cat-
egory learning stage is used and the novel category numbers are
20 and 83 for StanfordCars and Herbarium 19, respectively.

StanfordCars Herbarium 19
Method known novel all known novel all

AutoNovel 45.0±0 18.2±4.2 42.2±1.1 49.2±0 21.7±1.1 45.4±0.2

GM 45.0±0 12.5±3.1 41.6±1.7 49.2±0 22.7±1.5 45.5±0.9

iNCD 43.1±1.7 19.0±1.5 42.0±1.0 48.5±0.7 22.4±0.9 44.8±0

Happy 44.7±1.0 24.9±0.7 42.6±1.1 49.2±0 25.5±2.1 45.9±0.4

IIC 33.3±4.7 22.6±2.2 32.2±2.0 49.2±0 17.8±2.5 44.9±1.6

OpenCon 34.7±2.9 14.3±7.0 31.5±3.7 35.5±4.4 13.4±8.9 33.2±3.9

Orchestra 44.5±0.5 18.3±2.0 42.3±0.4 48.0±1.3 22.0±0.9 44.4±0.5

SemiFL 35.5±0.2 19.7±1.0 34.4±0.4 42.2±0.5 23.0±0.4 39.5±0.2

FedoSSL 42.5±0 18.3±1.0 40.8±0.5 46.2±1.1 15.6±0.9 41.9±0.6

AGCL 40.7±0.2 19.3±1.0 39.2±0.5 46.0±0.5 24.1±0.2 42.9±0.2

GPA 45.0±0 31.5±0.4 43.8±0.1 49.3±0.2 33.7±1.2 47.1±1.0

A.2. Baseline methods
To our knowledge, no direct baseline method can be used
to compare with our proposed methods in the setting of
FC2DL. In this case, for a fair comparison, we try our best
to integrate certain state-of-the-art baseline methods from
related areas, like standard novel category learning and fed-
erated self-supervised learning, into FL to solve FC2DL. In
addition to standard FedAvg [37], we also implement other
mainstream FL algorithms including FedProx [31], SCAF-
FOLD [23], and Moon [29], to see whether our GPA can
empower them the capability of NCDL. Next, we will pro-
vide the details of implementing these state-of-the-art base-
lines.

First of all, we assume that all baseline methods rely on
the same mL trained by GPA at the beginning of novel cate-
gory learning. AutoNovel [16] assumes that both the known
and the novel-category data are accessible during novel cat-
egory learning, and it has separate design and training loss
for known and novel data. Considering the unavailability of
the known-category data in FC2DL, we only apply its pair-
wise Binary CrossEntropy (BCE) loss without using the la-
beled known data:
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where gUω is the novel head of classifier. sij is obtained by
using feature rank statistics, and sij = 1 when the top-k
ranked dimensions of two samples in a data pair are iden-
tical, otherwise sij = 0. Besides, when we apply Au-
toNovel in the centralized training setting, we observe that



the model performance drops significantly due to the for-
getting of learned knowledge in known categories. To com-
pensate for such forgetting, we also equip AutoNovel with
EMA.

GM [62] is proposed to incrementally discover and learn
novel categories, and thus its problem settings are similar
to FC2DL except for whether the model is trained via FL or
not. In the design of GM, the model is alternatively updated
by a growing phase and a merging phase using the novel
class data only. In the setting of FC2DL, each selected client
conducts the growing phase in the first 20 global epochs
and then conducts the merging phase in the last 10 global
epochs. Like GPA, the EMA is applied after each global
epoch, and ε is set as 0.99. iNCD [44] is also designed for
discovering and learning novel categories continually like
GM. There is a feature replay loss in iNCD that relies on
the statistical information of known-category data, and we
provide such information while conducting iNCD in FL,
though we believe that it is unreasonable for both the server
and clients to be aware of statistics of known categories.
The same setup of known-category data is also employed in
Happy [36], one of the latest continual NCDL approaches.
IIC [32] heavily relies on known data to construct the loss
function, and thus we have to randomly pick half of the
known data and provide them to IIC in the novel category
learning stage. OpenCon [46], as another label-available
approach, is provided with the full set of known-category
data during the stage of novel class learning in FC2DL. As
IIC and OpenCon have been provided with known-category
data, we don’t incorporate forgetting compensation tech-
niques into them. As for Orchestra [35], although it is a
federated self-supervised learning method, only a few mod-
ifications are needed to adapt it for solving FC2DL. Specif-
ically, we first apply Orchestra to tune the feature extractor
on unlabeled novel-category data. During the tuning, we
equip Orchestra with EMA to preserve the known-category
performance. After sufficient tuning (30 global rounds for
each novel category learning stage), the feature extractor
is expected to produce more distinguishable representations
for novel category data. At this moment, we freeze the fea-
ture extractor followed by a new classifier head, and train
this head with pair-wise BCE loss of AutoNovel. As for
SemiFL [9], although it is designed for cases in which the
labeled and unlabeled data samples belong to the same cat-
egory space, we found that it can also work somewhat ef-
fectively where there is no labeled data. As a result, we
directly apply SemiFL in FC2DL except for assuming there
is no labeled data in the novel category learning stage. Fur-
thermore, FedoSSL [61] and AGCL [40] do consider the
recognition of unseen categories in FL, but their effective-
ness relies on labeled known-category data, which may not
be available in FC2DL. However, for a fair comparison, we
also provide them with a certain number of labeled known-

category data during experiments (same as what we provide
to IIC and OpenCon).

In addition to these NCDL baseline methods, we also
provide the implementation details of two state-of-the-art
novel-category number estimation approaches (MACC [50]
and EMaCS [7]). As mentioned in the main paper, existing
novel-category number estimation methods usually require
a certain number of labeled data – MACC and EMaCS are
no exceptions. Fortunately, MACC and EMaCS operate in
a way that doesn’t need labeled data from novel categories.
Instead, they only require labeled data from known cate-
gories. This requirement can be met without the need to
directly provide real known-category data. Specifically, we
apply prototype augmentations on known-category proto-
types PL constructed as neuron weights of classifier gω to
get labeled known-category representations as follows:

{zc,i = pL
c + n ⇐min d(ZU)}K

U,CU

i=1,c=1, (16)

where n ↔ N (0, 0.01) is a random vector with the same
dimension as prototypes (we have tried our best to find a
suitable Gaussian distribution and found the one with a vari-
ance of 0.01 is the best), and d(·) computes all sample-pair
Euclidean distances. The reason why we use the minimum
sample-pair distance in the local prototype pool ZU is to en-
sure that the augmented representations are located in clus-
ters with high density.

Then, we also provide the details of implementing the
combination methods between other FL algorithms and
Kmeans or our GPA. FedProx [31] introduces a regulariza-
tion term for balancing the difference between local mod-
els and the global model at each round. Thus we follow
FedProx to add such regularization to both known category
learning and novel category learning stages. As for SCAF-
FOLD [23], it incorporates a control variate that indicates
the stage of each FL participant, and with this control vari-
ate, the drift caused by non-IID can be mitigated. In the
problem of our interest, we maintain the updating policy of
this control variate in SCAFFOLD for both T L and T U.
Moon [29] leverages the principle of contrastive learning
and proposes to conduct model parameter contrastive com-
parison against non-IID. We also include such parameter
contrastive loss in the training of both T L and T U. As
mentioned in the main paper, unsupervised clustering, such
as Kmeans, can be applied to these FL algorithms to dis-
cover and learn novel categories. But note that dedicated
modifications are still needed as unsupervised clustering is
impacted by non-IID, e.g., Kmeans is non-parametric thus
it is hard to develop a global Kmeans mechanism that is ef-
fective to all participants without cluster merging. To apply
Kmeans, we leverage PPM to merge clusters of participants
and build global prototypes. Then we share these global
prototypes with all participants, and they can calculate the
distance between their local samples and these prototypes



Table 6. Experiments without using novel-category data filtering when employing GPA in FC2DL.

CIFAR-100 Tiny-ImageNet ImageNet-S
Method known novel all known novel all known novel all

GPA-mixture 71.8±0 52.4±1.0 67.9±0.4 57.5±0 39.5±1.0 55.7±0.3 55.8±0 38.0±1.2 52.2±0.3

GPA 71.9±0 52.3±1.0 68.0±0.4 57.6±0 39.1±1.9 55.8±0.7 55.8±0 37.4±1.0 52.1±0.4

Table 7. Performance comparison between GPA and other NCDL methods in centralized training setting. The ending 20 categories are the
novel categories and there is only one novel category learning stage.

CIFAR-100 Tiny-ImageNet ImageNet-S
Method known novel all known novel all known novel all

AutoNovel 34.6±1.4 42.0±8.4 36.1±2.0 27.2±1.5 30.7±0.9 27.5±1.5 41.5±0.3 31.9±7.3 39.5±0.2

GM 71.5±0 32.0±3.0 63.6±0.1 57.3±0 25.7±1.6 54.2±0 55.8±0 26.9±8.4 50.0±0.3

iNCD 66.3±1.6 40.9±7.7 61.2±2.5 53.0±1.4 29.0±0.5 50.6±1.2 51.7±0.2 31.8±2.1 47.8±0.2

Happy 72.0±0.5 45.6±1.3 66.7±0.6 57.2±0.3 34.1±2.2 54.9±0.7 55.5±0.8 31.5±0.6 50.7±0.4

IIC 68.2±1.0 45.4±3.9 63.6±1.1 55.5±0.3 27.0±1.3 52.6±0.3 52.1±1.1 30.4±3.4 47.7±0.2

OpenCon 63.3±1.0 30.7±9.7 56.8±0.9 48.4±0.3 29.9±0 46.2±0 47.2±4.2 22.6±2.4 42.3±3.6

SemiFL 39.8±4.4 31.5±0.9 38.1±1.0 45.6±0.9 34.3±2.0 44.5±0.9 42.6±1.3 30.0±1.4 40.1±0.8

FedoSSL 50.3±1.1 40.4±1.0 48.3±0.3 54.0±0 28.8±0.8 51.5±0.2 55.4±0.5 26.7±0.3 49.7±0

AGCL 67.3±0.4 44.2±1.6 62.7±0.5 52.0±0 29.6±0.7 49.8±0.1 55.2±1.0 31.1±0.4 50.4±0.2

GPA 72.0±0.2 56.5±1.3 68.9±0.4 57.5±0 45.7±1.7 56.3±0.4 55.7±0 43.1±0.9 53.2±0.2

to allocate the cluster labels.

A.3. Ablation study settings
According to the detachability and fungibility of different
modules in GPA, we conduct a thorough ablation study that
has been mentioned in the main paper. Here we provide
detailed experiment settings and more results. The modi-
fied prototype contrastive loss LPCL in the known category
learning, the contrastive weighted loss LCWL and the data
mixup LMIX in the novel category learning are easy to be
detached from GPA for ablation study. To validate the effec-
tiveness of SWL, instead of arbitrarily replacing SWL with
some loss functions that are expected to perform poorly,
e.g., pseudo-labeling-based CrossEntropy loss or prototype
learning loss, we choose the most effective self-training
loss in label-unavailable NCDL – pair-wise BCE loss [16].
Model mixup is used in GPA to compensate for the forget-
ting of known categories during novel category learning.
We replace model mixup with the old model logits distil-
lation and known prototype augmentation-based feature re-
play, which are used in iNCD [44] to alleviate forgetting on
known categories, during the ablation study.

Experiments without using novel category data filter-
ing. In the current design of GPA, we apply a data filter-
ing mechanism to screen out novel-category data and don’t
store highly potential unlabeled known-category data dur-
ing novel category learning to reduce memory cost and
comply with privacy or intellectual property regulations.
However, it only requires a minor modification if we want
to handle the scenario where there is a mixture of both un-
labeled known and novel-category data. That is, we detach
the usage of data filtering to prepare the novel dataset and,

instead, leverage it to build the high-confidence subset for
data mixup. We carry out experiments for such cases, and
the results are shown in the row ‘GPA-mixture’ of Table 6.
According to these results, there are even some improve-
ments when incorporating unlabeled known-category data
in the training, though we think it is impractical in real-
world scenarios.

B. More Experiments
B.1. Experiment results in the centralized setting
To further evaluate the general application potential of GPA,
we also carry out experiments in a centralized training set-
ting. Specifically, we assume that there is only one partici-
pant who owns the entire dataset conducting one novel cate-
gory learning stage with 20 novel categories, and the results
are shown in Table 7. It is clear that GPA achieves the best

performance on nearly all metrics even in the centralized

learning setting.

B.2. Experiment results with various degrees of het-
erogeneity

It is worth exploring how robust GPA is when faced with
varying levels of data heterogeneity. Therefore, we test GPA
and other baseline methods in a more challenging FL sce-
nario, in which the data distributions among participants
are more heterogeneous (ω of Dirichlet Distribution is set
as 0.001). From the experiment results in Table 8, we can
observe that GPA still performs the best in all cases on all
metrics. Combined with the experiment results shown in
Table 1 of the main paper and Table 7 here, which exactly
correspond to the settings of ω = 0.1 and ω ↗ +↘, re-



Table 8. Performance comparison between GPA and other baselines for FC2DL with more heterogeneous data distributions (ω of Dirichlet
Distribution is set as 0.001). The ending 20 categories are the novel categories with only one novel category learning stage. The experiment
results present that GPA can retain the performance superiority when the data heterogeneity becomes much heavier.

CIFAR-100 Tiny-ImageNet ImageNet-S
Method known novel all known novel all known novel all

AutoNovel 65.8±4.6 28.8±7.0 58.4±4.5 34.7±14.0 23.0±8.1 33.3±11.8 54.6±0.1 20.4±3.0 47.8±0.1

GM 71.5±0 27.3±0.9 62.7±0 57.3±0 19.6±3.7 53.6±0 55.8±0 19.4±0.7 47.5±2.7

iNCD 69.9±0.1 31.5±3.7 62.2±0 56.2±0.4 6.5±7.1 51.2±0.7 56.0±0.3 21.3±1.1 48.9±0

Happy 71.1±0.1 32.0±1.5 63.3±0.6 57.0±0 24.5±1.7 53.8±0.5 55.5±0 23.7±1.2 49.1±0.4

IIC 66.8±0.5 20.8±6.6 57.6±1.2 47.7±0.9 15.6±2.1 44.5±1.1 53.0±0 15.3±0 45.4±0

Orchestra 66.9±0.1 30.2±0.8 58.2±0 53.0±0.1 22.4±0.5 48.7±0.2 52.2±0.4 19.7±0.1 46.6±0

OpenCon 20.3±13.6 22.1±12.0 20.6±12.9 11.9±2.7 16.5±10.7 12.6±4.3 20.9±7.1 17.6±0.3 20.2±5.0

SemiFL 40.9±2.0 24.4±1.5 37.6±0.9 33.2±0.5 24.3±0.8 32.3±0.1 35.2±1.2 26.0±0.9 33.4±0.4

FedoSSL 60.7±0.4 18.0±0 52.2±0 50.8±0.6 10.0±2.0 46.7±0.8 52.6±0.7 16.1±1.0 45.3±0.2

AGCL 60.4±1.7 32.0±1.4 54.7±0.3 43.7±0.6 20.9±1.4 41.4±0.3 45.5±0 20.5±1.1 40.5±0.2

GPA 71.0±0.3 44.7±1.8 65.7±0.6 57.3±0 34.0±1.3 55.0±0.3 55.6±0.2 32.6±1.0 51.0±0.2

Table 9. Performance comparison between GPA and other baselines for FC2DL with different data partitions. 20 categories of CIFAR-100
are randomly selected with different seeds as the novel categories with one novel category learning stage. The experiment results present
that both PPM and GPA are robust to different data partitions.

Seed 2023 2024 2025

PPM est.# 19 20 20

Method known novel all known novel all known novel all

AutoNovel 73.1 21.3 62.7 73.1 22.1 63.0 71.5 21.6 61.8
GM 71.1 38.3 64.5 70.4 21.6 60.6 69.7 41.5 64.1
iNCD 73.0 24.7 63.4 72.5 25.5 63.3 71.0 24.4 62.6
Happy 71.0 39.4 64.7 71.5 37.9 64.8 71.9 39.0 65.3
IIC 55.1 36.2 51.3 49.8 33.1 46.4 51.6 36.4 48.6
OpenCon 60.7 20.9 52.8 61.5 18.7 52.9 60.0 19.5 52.2
Orchestra 71.1 22.8 61.5 72.0 25.5 62.8 70.0 20.8 60.8
SemiFL 47.0 30.6 43.7 52.3 29.5 47.7 48.7 30.4 45.0
FedoSSL 65.1 22.4 56.6 64.3 23.8 56.2 63.0 20.3 54.5
AGCL 67.2 36.6 61.1 65.9 35.5 59.8 66.0 36.3 60.1

GPA 73.0 54.4 69.3 73.3 52.0 69.0 72.5 53.2 68.6

spectively, we can conclude that our approach GPA is able
to consistently perform well and achieve effective novel cat-
egory learning in FC2DL under various levels of data hetero-
geneity.

B.3. Experiment results in settings with different
data partitions

In experiments of the main paper, following regular NCDL
studies [44, 62], we choose the same widely-used data parti-
tion settings based on ordered label sequence, but this does
not mean that the effectiveness of PPM relies on the data par-
tition. We conduct additional experiments of various data
partitioning settings by randomly selecting 20 categories as
the novel ones while the rest are the known categories with
three seeds, 2023, 2024, and 2025, respectively. The de-
tailed results are shown in Tables 9, 10 and 11. We can
observe that regardless of data partitions, PPM always pro-
vides accurate novel-category number estimation, and GPA
performs the best all the time.

B.4. Sensitivity analysis of hyper-parameters
There are several hyper-parameters in our algorithm, some
of which are directly adopted from common values. For
instance, the ϑ in Eqs. (4), (9), and (10) in the main pa-
per are set to 0.07 as the standard contrastive loss for fair
comparison. As for others, we conduct thorough sensitivity
analysis, including ϖ in the known category learning stage,
r↑ in the data mixup, and ε in the model mixup on CIFAR-
100 with one novel category learning stage. The experiment
results are shown in Table 12. We can observe that GPA is
robust to different values of ϖ and r↑, and performs the best
when ϖ = 0.10 and r↑ = 0.95. Different values of ε di-
rectly associate with the preservation of feature extraction
ability learned in the known category learning stage, thus it
impacts the performance of GPA.

B.5. Experiment results with a large number of par-
ticipants

In real-world application scenarios, there can be a large
amount of participants in the FL system. Thus, we evaluate



Table 10. Performance comparison between GPA and other baselines for FC2DL with different data partitions. 20 categories of Tiny-
ImageNet are randomly selected with different seeds as the novel categories with one novel category learning stage. The experiment results
present that both PPM and GPA are robust to different data partitions.

Seed 2023 2024 2025

PPM est.# 21 19 20

Method known novel all known novel all known novel all

AutoNovel 56.5 24.9 53.5 56.2 20.6 53.1 57.1 19.7 53.4
GM 56.6 22.0 53.1 56.7 24.8 53.5 56.2 26.2 53.2
iNCD 56.5 27.8 53.8 56.0 22.7 53.3 56.5 22.4 53.3
Happy 56.5 27.5 53.6 56.2 28.0 53.4 55.9 27.9 53.1
IIC 46.5 23.1 44.2 48.2 21.7 45.6 47.3 18.6 44.4
OpenCon 45.5 16.0 43.2 42.7 18.2 40.1 47.0 15.5 43.8
Orchestra 56.5 25.0 53.5 56.5 22.4 53.4 56.7 22.0 53.3
SemiFL 36.4 25.9 35.4 40.2 27.8 39.0 36.5 26.0 35.5
FedoSSL 56.0 10.8 51.5 56.2 18.9 52.5 56.7 12.0 52.2
AGCL 47.0 25.5 44.9 46.6 22.9 44.2 48.0 27.5 46.0

GPA 56.7 39.8 55.0 56.9 39.4 55.2 57.3 38.5 55.4

Table 11. Performance comparison between GPA and other baselines for FC2DL with different data partitions. 20 categories of ImageNet-S
are randomly selected with different seeds as the novel categories with one novel category learning stage. The experiment results present
that both PPM and GPA are robust to different data partitions.

Seed 2023 2024 2025

PPM est.# 19 19 20

Method known novel all known novel all known novel all

AutoNovel 54.0 19.5 47.1 57.2 22.9 50.4 55.5 17.0 47.8
GM 54.0 29.7 49.3 55.3 25.2 49.3 54.7 24.1 48.6
iNCD 54.0 22.7 47.6 56.7 23.0 50.1 55.0 20.7 48.1
Happy 54.0 29.7 49.1 55.6 29.4 50.4 55.0 29.0 49.8
IIC 54.0 27.7 48.8 54.2 30.6 49.5 54.3 26.6 48.7
OpenCon 47.0 16.6 41.2 46.7 18.3 41.4 47.2 18.0 41.5
Orchestra 53.0 20.7 47.0 56.2 24.0 50.1 55.0 20.5 48.1
SemiFL 42.4 25.0 38.9 44.0 26.9 40.6 41.5 25.0 38.2
FedoSSL 53.0 17.7 45.9 54.0 22.5 47.7 51.5 20.9 45.4
AGCL 44.7 20.9 39.9 46.8 23.2 42.1 45.0 22.1 40.4

GPA 54.1 36.5 50.6 57.0 37.5 53.1 55.6 37.2 51.9

FC2DL under a situation where there are a large number of
participants for CIFAR-100 with one novel category learn-
ing stage. Specifically, we randomly select 20 clients from
all participants every global round to conduct local training.
The results are shown in Table 13, which shows that GPA
can still perform the best when there are many participants.

B.6. Experiment results of launching data recon-
struction attacks

In GPA, the sharing of local prototypes only occurs once
before novel category learning, which is more secure than
many FL works [21, 48] of other fields where prototypes are
shared every round. The local prototypes are constructed
by conducting unsupervised clustering on unlabeled novel
data. Each participant maintains an identical count of clus-
ters, and the semantic affiliations of distinct clusters across
different clients diverge, as illustrated in Eq. (6) of the main
text. Therefore, a direct comparison of cluster labels of lo-

cal prototypes does not divulge sensitive label information.
Label information leakage could arise from comparing the
similarities between different participants’ local prototypes.
However, when local prototypes are shared, the model’s ca-
pability to extract meaningful features from unlabeled novel
data is relatively weak. Consequently, the similarity be-
tween prototypes is unreliable, implying that similar pro-
totypes might correspond to different categories, and dis-
tinct prototypes could potentially correspond to the same
category. This also prevents privacy leakage caused by data
reconstruction attacks. The reason is that when construct-
ing prototypes, each cluster contains a mixture of multi-
ple categories due to the weak feature extraction ability,
thereby causing the cluster centers to contain information
from multiple categories. Moreover, for those clusters only
with small data volumes, the high similarity in the repre-
sentation space may not reliably correspond to a similarly
high similarity in the input space. Moreover, works [21, 48]



Table 12. Sensitivity analysis of ε in known category learning stage, r→ in data mixup, and ϑ in model mixup. Experiments are conducted
using CIFAR-100 with one novel category learning stage (20 novel categories).

ε known novel all ϑ known novel all r→ known novel all
0.02 71.6 49.8 67.2 0.10 43.8 27.5 40.5 0.50 71.7 51.7 67.7
0.05 71.9 51.1 67.7 0.50 64.0 38.2 58.8 0.80 71.7 52.0 67.8
0.10 71.9 52.3 68.0 0.80 68.0 41.4 62.7 0.90 71.9 52.1 67.9
0.50 71.1 52.0 67.3 0.95 71.4 51.6 67.4 0.95 71.9 52.3 68.0
1.00 71.0 51.3 67.1 0.99 71.9 52.3 68.0 0.99 71.9 52.0 67.9

Table 13. Performance comparison between GPA and other baselines for FC2DL with more participants. The ending 20 categories of
CIFAR-100 are used as the novel categories and there is only one novel category learning stage in FC2DL. The experiment results present
that GPA can retain the performance superiority where there are a large number of participants in FC2DL.

Participant # 20 50 100

Method known novel all known novel all known novel all

AutoNovel 68.2 30.1 60.5 68.0 27.9 59.6 68.3 27.0 59.5
GM 71.1 36.1 64.1 71.1 31.3 63.2 71.1 30.8 63.1
iNCD 70.5 31.7 62.7 70.5 29.6 62.3 71.1 25.2 62.0
Happy 71.1 39.0 64.7 71.3 37.9 64.6 71.0 38.2 64.4
IIC 61.8 21.7 53.8 62.3 22.4 54.6 61.1 16.2 52.1
Orchestra 67.7 31.1 60.6 68.5 25.6 59.3 67.8 26.0 59.2
OpenCon 61.7 21.0 53.6 71.9 17.8 61.1 71.7 19.3 61.2
SemiFL 46.5 27.0 42.6 46.1 24.8 41.8 45.4 26.3 41.6
FedoSSL 61.8 18.0 53.0 61.9 17.6 53.0 60.7 16.5 51.9
AGCL 64.8 34.2 58.7 63.6 32.5 57.4 61.9 30.6 55.6

GPA 72.0 52.0 68.0 71.7 51.4 67.6 71.5 51.2 67.4

Figure 3. Recovered images of conducting data reconstruction at-
tack on three local prototypes of three datasets. The data recon-
struction attack optimizes the recovered images in the input space
and tries to make their representations as close to local prototypes
as possible. We apply Adam to minimize the mean square errors
until the error cannot decrease further.

highlight that prototypes are formed in a low-dimensional
space by averaging data representations, and mainstream
model structures include numerous operations of dropout,
pooling, and ReLU activations. These two factors are irre-
versible, which further strengthens the privacy preservation
of our work.

Given the absence of data reconstruction attacks against
representations in the literature, we speculate that attacks

are most likely to follow Deepleakage [65] – optimizing
dummy data to align the representation as closely as pos-
sible with the target. The results of this attack are shown
in Figure 3. It is nearly impossible to capture interpretable
semantics from the recovered images, showing that the pri-
vacy of prototypes is preserved.

B.7. Experiment results of the forgetting of known
categories

To measure the forgetting of known categories after novel
category learning, we only need to know the performance
of mL right after known category learning. Therefore, here
we provide the detailed results before T U, which are shown
as Tables 14 and 15.

B.8. Experiment results on pre-trained vision trans-
formers

In recent NCDL studies, the backbone model is assumed
to be pre-trained with a large amount of public data, but in
FL, this assumption is not reasonable as the data is private.
However, we also test our GPA approach with other base-
line methods using pre-trained vision transformers (ViT).
We follow Ma et. al [36] to adopt ViT-B/16 as the backbone
model, and the results are shown in Table 16. What we can
observe is that GPA can still achieve the best performance
in all cases, which validates the general effectiveness of it.



Algorithm 1 Overall Global Prototype Alignment.
Given: A global model m = fω → gε consists of a feature extrac-
tor fω and a classifier gε . At the beginning, there are KL partici-
pants {S1,S2, ...,SKL

}, and each holds its labeled known cate-
gory dataset {DL,1,DL,2, ...,DL,KL

}. FL’s total training round
is Eg .
Known Category Learning:
for t = 1, · · · , Eg do

Server randomly selects KL clients;
for Ss,k in {Ss,1,Ss,2, · · · ,Ss,KL

} do
Apply LT L = LCE + εLPCL;
Upload ↑ω,εLk

T L to the Server;
Server applies FedAvg to calculate aggregated gradients
↑ω,εLAvg

T L ;
Server distributes ↑ω,εLAvg

T L to all participants.
Novel Category Data Filtering:
for Sk in {S1, ...,SU} do

while DU,k is not full do
Apply Eq. (5) of the main paper to filter out known cat-
egory data;
Store the remaining data in the data memory and form
the novel category dataset DU,k;

Novel Category Learning:
Conduct Algorithm 2;

Algorithm 2 Novel Category Learning.
Given: After known category learning, a model m =
fω → gε is given. There are KU active participants
{S1,S2, ...,SKU

}, and each holds unlabeled novel category
dataset {DU,1,DU,2, ...,DU,KU

}. PPM ascending iteration is E.
FL’s training round is Eg .
All Active Participants:
for Sk in {S1,S2, · · · ,SKU

} do
Apply Kmeans on fω(DU,k);
Return Kmeans cluster centers ZU,k;

Server:
// Conduct PPM
Receive and shuffle ZU = ↓KU

k=1ZU,k;
for e = 0, · · · , E do

D = {d(zU
i , z

U
j )}zU

i ,zU
j ↑ZU ;

ϖe = minD + e
E · (maxD ↔minD);

Apply DBSCAN with nsize = 2 and ϖe;
Record unique cluster number c̃Ue ;

Estimate the novel category number as C̃U = max{c̃Ue }Ee=0;
Apply Kmeans with C̃U to construct global prototypes PU =

{ẑU
c }C̃

U

c=1 and randomly initialize gε;
Selected Clients:
for t = 1, · · · , Eg do

Server randomly selects KU clients;
for Ss,k in {Ss,1,Ss,2, · · · ,Ss,KU

} do
Apply SWL, CWL, and data mixup;
Update fω with model mixup and gε in backpropagation;
Upload gradients to the Server.

Server applies FedAvg;
Server distributes aggregated gradients;

Table 14. Model performance before novel category learning for CIFAR-100, Tiny-ImageNet, and ImageNet-S. All baseline methods rely
on the same model mL. Performance forgetting of known categories can be calculated by subtracting the known accuracy after novel
category learning.

CIFAR-100 Tiny-ImageNet ImageNet-S
Metric known novel all known novel all known novel all

mL 72.7±0.1 13.4±4.2 59.9±1.5 57.6±0 15.7±3.1 53.4±1.2 55.8±0.1 12.8±2.0 47.2±1.1

C. Overall Optimization Pipeline

GPA is proposed to enable FL systems to discover and learn
unseen novel categories. We assume any FL system can pe-
riodically leverage GPA to incorporate novel categories or
functionalities after the training on labeled known-category
data. Specifically, when the novel category learning stage
starts, all available FL participants at that moment first
need to apply unsupervised clustering on their local data
to find local potential prototypes. These local prototypes
will be sent to the server only once and then GPA will apply
PPM to merge these prototypes to estimate the global novel-
category number and construct the global novel prototypes.
Then at each round, each selected client can leverage SWL,
CWL, and data mixup to conduct local training. The back-

bone local feature extractor is updated by our model mixup,
while the classifier head is optimized via back-propagation.
This pipeline is shown in Algorithm 2, and the overall GPA
workflow is Algorithm 1.

D. Limitations and Future Work

This paper mainly focuses on achieving continuous cate-
gory discovery and learning for FL from the algorithmic
perspective. Although the proposed GPA can be empiri-
cally demonstrated effective, there is no rigorous theoretical
proof that this will always be the case. Therefore, in future
work, establishing a theoretical framework for FC2DL and
providing rigorous analysis of GPA could be the first step.
Moreover, considering FC2DL in more advanced scenarios



Table 15. Model performance before novel category learning for CUB200, StanfordCars, and Herbarium 19. All baseline methods rely on
the same model mL. Performance forgetting of known categories can be calculated by subtracting the known accuracy after novel category
learning.

CUB200 StanfordCars Herbarium 19
Metric known novel all known novel all known novel all

mL 40.7±0 10.1±1.2 38.3±0.5 45.0±0 11.2±0.1 42.6±0 49.5±0.1 10.0±1.0 44.0±0.2

Table 16. Performance comparison between GPA and other NCDL methods on pre-trained ViT-B/16. The ending 20 categories are the
novel categories and there is only one novel category learning stage.

CIFAR-100 Tiny-ImageNet ImageNet-S
Method known novel all known novel all known novel all

AutoNovel 57.3 45.0 54.8 47.8 45.7 47.6 72.3 47.8 67.4
GM 86.0 40.2 76.8 77.9 43.3 74.4 81.5 47.6 74.7
iNCD 78.3 47.5 72.1 72.7 49.1 70.3 80.4 50.2 74.4
Happy 86.2 48.7 78.7 78.8 52.2 76.1 82.9 55.0 77.3
IIC 73.7 47.3 68.4 75.5 47.0 72.7 79.4 47.9 73.1
OpenCon 72.5 38.8 65.8 65.9 42.6 63.6 74.7 42.5 68.3
SemiFL 60.2 40.7 56.3 67.9 47.0 65.8 66.6 45.8 62.4
FedoSSL 75.5 46.2 69.6 75.0 48.8 72.4 76.7 47.0 70.8
AGCL 80.3 50.2 74.3 73.5 51.6 71.3 78.9 53.4 73.8

GPA 86.5 55.6 80.3 79.0 54.3 76.5 83.5 59.2 78.6

and domains, e.g., object detection in autonomous driving,
medical semantic segmentation, and some natural language
processing cases, is also worthy of exploring in the future.

E. Broader Impact
The FC2DL study outlined in this paper presents substan-
tial societal implications and potential benefits without an
apparent negative impact. As privacy concerns become in-
creasingly important, the need for efficient methods to han-
dle dynamic data distributions without compromising pri-
vacy is critical. Our GPA framework is designed to ad-
dress the challenges of FC2DL, specifically in merging and
aligning novel categories identified and learned by different
clients while preserving privacy. This, in essence, supports
a more sustainable and adaptable machine learning system
that can evolve with changing data scenarios. GPA’s im-
pressive results, even in non-FL or centralized training sce-
narios, indicate its potential for wide-reaching application
in various real-world scenarios. These scenarios include but
are not limited to, healthcare, financial services, telecom-
munications, and social networking platforms, where pre-
serving user privacy while continually adapting to new in-
formation is paramount. Moreover, the improved model
performance achieved with GPA can contribute to more re-
liable and efficient systems, enhancing user experiences and
outcomes. We believe that our research in FC2DL and the
development of GPA pave the way for advancements in
privacy-conscious, dynamic learning systems, fostering a
more secure and adaptable digital landscape.
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