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A. Implementation details
A.1. Hyper Parameters
We use the AdamW optimizer to train our model, the weight decay and epsilon are set to 1e-2 and 1e-8, respectively. During
training, the weights of λidt and λGAN are 0.5 and 1, respectively, we use gradient clipping with a max norm of 10, and low
light and normal light images are randomly paired to ensure the generalization of the model.

A.2. Algorithm Flow
We use pseudo code as shown in Algorithm 1 to illustrate the process of our method more fully, and Algorithm 2 describes
in more detail the specific process of the proposed caption consistency and reflectance consistency.

Algorithm 1 Pipeline of the Proposed Method SCUF

1: Input:
(1) the low-light image Il and normal-light image In
(2) the V channel image Il,v, In,v and reverse image Irl,v, Irn,v from Il and In in HSV color space, respectively.
(3) the text prompt Tl and Td for lightening and darkening, respectively.

2: Networks: The lighten encoder El and decoder Dl, the draken encoder Ed and decoder Dd, and initial fixed Unet U ,
lightening and darkening discriminators Disl and Disn

3: for i in 1 : iterations do
4: for the cycle generation do
5: Input Il and obtain the generated normal-light image În and low-light image I

′

l by:
În = Dl(U(El(Il), (Tl, I

r
l,v)))

I
′

l = Dd(U(Ed(În), (Td, Il,v)))
6: Do caption and reflectance consistency
7: Input In and obtain the generated low-light image Îl and normal-light image I

′

n by:
Îl = Dd(U(Ed(In), (Td, I

r
n,v)))

I
′

n = Dl(U(El(Îl), (Tl, In,v)))
8: Do caption and reflectance consistency
9: Compute the L1 loss Ll1 for Ll1(Il, I

′

l ) and Ll1(In, I
′

n)
10: end for
11: for the identity regularization do
12: Input Il and obtain the generated low-light image Îl by:

Îl = Dd(U(Ed(Il), (Td, Il,v)))
13: Do caption and reflectance consistency
14: Input In and obtain the generated normal-light image În by:

În = Dl(U(El(Il), (Tl, In,v)))
15: Do caption and reflectance consistency
16: Compute the L1 loss Ll1 for Ll1(Il, Îl) and Ll1(In, În)
17: end for
18: for the discriminator learning do
19: learn from the fake predictions Disl(În) and Disd(Îl)
20: learn from the real inputs Disd(Il) and Disl(In)
21: end for
22: end for



Algorithm 2 Caption and Reflectance Consistency

1: Input:
(1) the caption prompt Capl and Capn from Il and In, respectively.
(2) the reflectance map Iref,l and Iref,n from Il and In, respectively.

2: Networks: The reflectance decoder Dr.
3: Loss: The cosine similarity loss COS , L1 loss Ll1, and MSE loss Lmse.
4: for i in 1 : iterations do
5: for the cycle generation do
6: Input Il and compute the caption consistency loss Lcap,Il and reflectance consistency loss Lref,Il by:

Zl = U(El(Il), (Tl, I
r
l,v))

Zd = U(Ed(În), (Td, Il,v))
Lcap,Il = COS(U(El(Il), Capl), Zd)
Lref,Il = Lmse(Dr(Zl), Dr(Zd)) + Ll1(Dr(Zd), Iref,l)

7: Input In and compute the caption consistency loss Lcap,In and reflectance consistency loss Lref,In by:
Zd = U(Ed(In), (Td, I

r
n,v))

Zl = U(El(Îl), (Tl, In,v))
Lcap,In = COS(U(Ed(In), Capn), Zl)
Lref,In = Lmse(Dr(Zd), Dr(Zl)) + Ll1(Dr(Zl), Iref,n)

8: end for
9: for the identity regularization do

10: Input Il and compute the caption consistency loss Lcap,Il and reflectance consistency loss Lref,Il by:
Zd = U(Ed(Il), (Td, Il,v))
Lcap,Il = COS(U(El(Il), Capl), Zd)
Lref,Il = Ll1(Dr(Zd), Iref,l)

11: Input In and compute the caption consistency loss Lcap,In and reflectance consistency loss Lref,In by:
Zl = U(El(In), (Tl, In,v))
Lcap,In = COS(U(Ed(In), Capn), Zl)
Lref,In = Ll1(Dr(Zl), Iref,n)

12: end for
13: end for



B. Experimental Comparisons
B.1. Detailed Quantitative Analysis Results.
Since training datasets used by unsupervised low-light enhancement methods are different, we follow [14] to explain training
sets of all methods. In the paper, we only show results of RUAS[11] and SCI[12] trained on LOL[19]. We can see from
Tab. 1 that our method performs best on high-level vision tasks and shows the best generalization. We also show the result of
the model trained on the LSRW[5] dataset, where we can see that its performance on high-level vision tasks is not as good as
that trained on EnlightGan[7], but still outperforms most existing low-light enhancement methods.

Table 1. Compare with existing low-light enhancement methods. ‘T’, ‘S’, and ‘U’ indicate traditional, supervised, and unsupervised
methods, respectively. ∗ denotes our re-implementation with the same training data we use. The best results are highlighted in bold.

Type Method Venue & Years Train Set
LSRW[5] LOL[19] CODaN[8] DARK FACE[18] BDD100K-night[21]

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Top-1(%) mAP(%) mIoU(%)

T
LIME [4] TIP’16 N/A 14.88 0.3487 0.4030 16.90 0.4917 0.4022 14.09 11.0 14.2

DUAL [22] CGF’19 N/A 13.76 0.3532 0.4150 16.76 0.4911 0.4060 14.67 11.0 14.1

S
RetinexNet [15] BMCV’18 LOL 15.59 0.4176 0.3998 17.68 0.6477 0.4433 47.48 13.2 13.2

Retinexformer [1] ICCV’23 LOL 17.19 0.5093 0.3314 22.79 0.8397 0.1707 52.81 16.4 15.9
CIDNet [16] CVPR’25 LOL 18.00 0.5198 0.2962 20.68 0.8411 0.1156 58.32 14.5 17.4

U

EnlightenGan [7] TIP’21 own data 17.59 0.4867 0.3117 18.68 0.6728 0.3013 56.42 14.2 16.6
Zero-DCE [3] CVPR’20 own data 15.86 0.4536 0.3176 18.06 0.5736 0.3125 57.76 15.9 16.6

Zero-DCE++ [9] TPAMI’21 own data 16.21 0.4571 0.3266 17.37 0.4373 0.3118 59.88 15.2 17.7
RUAS upe [11] CVPR’21 MIT 13.00 0.3442 0.3989 13.97 0.4656 0.3401 57.26 12.8 18.6
RUAS lol [11] CVPR’21 LOL 14.33 0.4841 0.4800 15.33 0.4876 0.3097 51.60 14.0 15.2

RUAS dark [11] CVPR’21 DARK FACE 14.11 0.4183 0.3811 14.89 0.4553 0.3722 55.42 12.0 16.5
SCI easy [12] CVPR’22 MIT 11.79 0.3174 0.4004 11.98 0.3986 0.3543 59.76 14.0 17.5

SCI medium [12] CVPR’22 LOL 15.24 0.4240 0.3218 17.30 0.5335 0.3079 58.84 14.7 18.0
SCI difficult [12] CVPR’22 DARK FACE 15.16 0.4080 0.3259 17.25 0.5462 0.3171 59.56 14.8 17.4

PairLlE [2] CVPR’23 own data 17.60 0.5118 0.3290 19.88 0.7777 0.2341 52.29 16.0 16.4
SADG [23] AAAI’23 own data 16.32 0.4564 0.3471 16.93 0.5372 0.3513 56.80 14.9 14.8

CLIP-LIT [10] ICCV’23 own data 13.47 0.4089 0.3572 15.18 0.5290 0.3689 54.64 14.1 17.3
NeRCo [17] ICCV’23 LSRW 19.46 0.5506 0.3052 19.66 0.7172 0.2705 54.15 12.4 18.1

QuadPrior [14] CVPR’24 COCO 16.90 0.5429 0.3459 20.30 0.7909 0.1858 59.48 15.7 14.9
ZERO-IG LSRW [13] CVPR’24 LSRW 18.21 0.5665 0.4946 18.65 0.4819 0.3819 47.60 15.6 14.9
ZERO-IG LOL [13] CVPR’24 LOL 16.44 0.5033 0.3744 18.13 0.7455 0.2478 53.48 15.2 14.7
LightenDiffusion [6] ECCV’24 own data 18.42 0.5334 0.3209 22.79 0.8540 0.1666 57.40 16.3 16.0
LightenDiffusion∗ ECCV’24 EnlightenGan data 16.92 0.5250 0.3824 18.27 0.7944 0.2457 57.32 16.4 16.8

Ours EnlightenGan data 18.41 0.5341 0.2974 21.32 0.8073 0.1928 60.92 16.9 20.1
Ours-LSRW LSRW 18.96 0.5438 0.2673 20.22 0.7649 0.2157 60.56 16.3 18.0



B.2. Visual Quality Comparison.
We also show enhancement results of different low-light enhancement methods, as shown in Fig. 1, Fig. 2 and Fig. 3. Our
model achieves relatively high-fidelity results.

EnlightenGan Zero-DCE Zero-DCE++Input

SCI-LOLRUAS-LOL PairLIE SADG

NeRCo ZERO-IG-LSRWCLIP-LIT QuadPrior

OursLightenDiffusion GTLightenDiffusion

(retrain)

Figure 1. Visual quality comparison between the proposed method and other state-of-the-art methods on the LSRW[5].



EnlightenGan Zero-DCE Zero-DCE++Input

SCI-LOLRUAS-LOL PairLIE SADG

NeRCo ZERO-IG-LSRWCLIP-LIT QuadPrior

OursLightenDiffusion GTLightenDiffusion

(retrain)

Figure 2. Visual quality comparison between the proposed method and other state-of-the-art methods on the LSRW[5].



EnlightenGan Zero-DCE Zero-DCE++Input

SCI-LOLRUAS-LOL PairLIE SADG

NeRCo ZERO-IG-LOLCLIP-LIT QuadPrior

OursLightenDiffusion GTLightenDiffusion

(retrain)

Figure 3. Visual quality comparison between the proposed method and other state-of-the-art methods on the LOL[19].



B.3. High-level Vision Comparison.
We show results of existing low-light enhancement methods on night image classification in Fig. 4, low-light face detection in
Fig. 5 and Fig. 6, and nighttime semantic segmentation in Fig. 7. We can see that our method achieves the best performance.

Input

Ours

SADG

Zero-DCE Zero-DCE++

CLIP-LIT

EnlightenGan

LightenDiffusion

NeRCoPairLIE

RUAS-LOL

SCI-LOL

ZERO-IG-LSRW ZERO-IG-LOLQuadPrior

Input Zero-DCE Zero-DCE++ EnlightenGan RUAS-LOL

SADG CLIP-LIT NeRCoPairLIESCI-LOL

OursLightenDiffusionZERO-IG-LSRW ZERO-IG-LOLQuadPrior

Figure 4. Qualitative comparison of the proposed method with other state-of-the-art low-light enhancement methods on night image
classification on CODaN[8].



EnlightenGanZero-DCE Zero-DCE++Input

SCI-LOLRUAS-LOL PairLIE NeRCo

ZERO-IG-LSRWQuadPrior LightenDiffusion Ours

Figure 5. Qualitative comparison of the proposed method with other state-of-the-art low-light enhancement methods on dark face detection
on DARK FACE[18].



EnlightenGanZero-DCE Zero-DCE++Input

SCI-LOLRUAS-LOL PairLIE NeRCo

ZERO-IG-LSRWQuadPrior LightenDiffusion Ours

Figure 6. Qualitative comparison of the proposed method with other state-of-the-art low-light enhancement methods on dark face detection
on DARK FACE[18].
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Figure 7. Qualitative comparison of the proposed method with other state-of-the-art low-light enhancement methods on nighttime image
semantic segmentation on BDD100k-night[21].



B.4. Visual Analysis of Different Adapters.
In the paper, we compared the visual analysis of image feature extraction by different components. We supplement the visual
analysis experiments using different adapters. As shown in Fig. 8, results using the IP-Adapter[20] are even worse than the
original adapter that directly connects text and image features. This fully demonstrates that the IP-Adapter is not suitable for
the illumination-aware image prompt. The cycle-attention adapter we proposed fully exploits the semantic features of the
illumination-aware image prompt and achieves the best result.

Input Baseline + CC

GT + RC Ours

Original IP-Adapter CA-Adapter

Figure 8. Visual analysis of the different adapters.

B.5. Another Baseline on Normal Light Images.
The pre-trained downstream models tend to overfit on training data, such as classification and detection results as shown in
Sec. B.5, while the normal light segmentation results are close to our enhanced low light images because they are tested on
BDD100k, which the model has not seen.

Setting Cls Top-1(%) Det mAP(%) Seg mIoU(%)
Pretrained Data CODaN-day WIDER FACE Cityscapes

Normal light Data CODaN-day WIDER FACE BDD100k-day
Baseline (Normal) 82.52 55.9 23.1

Low light Data CODaN-dark DARK FACE BDD100k-night
Baseline (Low) 53.24 10.8 11.4

Ours 60.92 16.9 20.1

C. Failure cases.
While our method generalizes better than existing approaches, two challenges remain as shown in Fig. 9. First, due to detail
loss in low-light images, small object detection remains difficult, which is a limitation across most methods. Second, under
extreme low-light degradation, enhanced outputs may still contain noise and artifacts, hindering complete restoration (e.g.,
the tree in segmentation). Transferring semantic knowledge from normal-light conditions to guide restoration remains a
challenging problem. Future work needs to explore more diverse low-light scenarios and the performance upper bound.

OursGT GT Ours

Figure 9. Fail cases.
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