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Supplementary Material

A. Ejection Fraction Estimation

The Left Ventricular Ejection Fraction (LVEF ) is a critical
measure of cardiac pump function. Its calculation requires
determining the End-Diastolic Volume (VED), the volume
of the left ventricle when it is maximally filled, and the End-
Systolic Volume (VES), the volume when it is maximally
contracted.

The general formula to compute the LVEF is:

LVEF =
VED − VES

VED
× 100%. (7)

Biplane Simpson’s method This method is the gold stan-
dard recommended by the American Society of Echocar-
diography [17] because it involves fewer geometric as-
sumptions and is more accurate, especially for abnormally
shaped ventricles. The method uses two orthogonal views:
the apical four-chamber (a4c) and the apical two-chamber
(a2c) view. The left ventricle is divided into a series of n
disks of equal height along its long axis, L. Each disk is as-
sumed to be an elliptical cylinder. The total volume V is the
sum of the volumes of all disks. The volume is calculated
using the diameters of the i-th disk measured from the four-
chamber (D4c

i ) and two-chamber (D2c
i ) views. The volume

formula is given by:

V =
π

4

n∑
i=1

(
D4c

i ·D2c
i · L

n

)
. (8)

Single-plane Simpson’s method This is a simplified ver-
sion of the method, applied when only one view (typically
the apical four-chamber view) is of sufficient quality for
analysis. This method uses only a single view and assumes
the left ventricle is a solid of revolution. Therefore, each
disk is treated as a perfect circular cylinder. The volume
calculation relies on the diameter of each disk (D4c

i ) as mea-
sured from the single available plane. The volume formula
is:

V =
π

4

n∑
i=1

(
(D4c

i )2 · L
n

)
. (9)

For both methods, VED and VES are calculated sepa-
rately using the appropriate formula. These values are then
used in the general LVEF Eq. (7) to determine the ejection
fraction.

B. Experiments Continued
B.1. The Clinical Metric
We also performed linear regression and Bland-Altman
plots for the clinical metric LVEF on the EchoNet-Dynamic
dataset. As shown in the Fig. 11 and Tab. 5, our method
demonstrated excellent performance and favorable clinical
metrics.

Method EchoNet-Dynamic
corr bias ± std ( % )

XMem++ [3] 0.692 5.77 ± 10.4
Cutie [7] 0.695 4.30 ± 11.7

VideoMamba [19] 0.764 -2.92 ± 9.38
Vision LSTM [2] 0.768 -2.42±9.10
PKEchoNet [40] 0.852 1.29±9.62

DSA [22] 0.868 1.42±9.18
MemSAM [10] 0.859 1.09±9.44
SimLVSeg [26] 0.794 0.91±9.56

GDKVM 0.872 -0.70±9.15

Table 5. Clinical metrics comparison against different state-of-the-
art methods on EchoNet-Dynamic.
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Figure 11. Linear regression and Bland-Altman plots for clinical
metric LVEF on EchoNet-Dynamic.

B.2. Visual Comparison with SOTA
We also conducted experiments on EchoNet-Dynamic, and
the visualization is shown in Fig. 12.

B.3. Visualization of the Weights
We also conducted experiments on the weights of parame-
ters αt and βt over training steps on the EchoNet-Dynamic
dataset, as shown in Fig. 13.



Figure 12. Visual comparison with state-of-the-art methods on the EchoNet-Dynamic test set. Green, red, and yellow regions represent the
ground truth, prediction, and overlapping regions, respectively.
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(a) Distribution of parameter αt.
Darker regions indicate higher den-
sity.
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(b) Distribution of parameter βt.
Darker regions indicate higher den-
sity.
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(c) Distribution of gradient αt and
βt.
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(d) Pearson Correlation of gradient
αt and βt.

Figure 13. Weights of parameters αt and βt over training steps
on EchoNet-Dynamic.

These figures show how αt (controlling memory decay)
and βt (balancing old and new information) evolve over
training. Their values fluctuate roughly between −0.06 and
+0.06, and they often become more concentrated or exhibit
recurring “hot spots” as training progresses. Such distribu-
tions suggest that the model continually adjusts these gat-
ing factors to align with changing task demands, eventually
reaching relatively stable (or task-optimal) regions.

Although the gradients for these parameters frequently
display positive or negative spikes, most gradient values re-
main within a stable range. This indicates that the network

periodically makes significant adjustments to “forget” old
information or to “retain” it when needed. Large gradient
magnitudes can pose training challenges, highlighting the
importance of proper learning rate settings, gradient clip-
ping, or regularization.

Across different value ranges, the gradients of α and β
can correlate positively or negatively, forming visually dis-
tinct blocks or diagonal patterns. In certain ranges, an in-
crease in α (faster memory decay) may coincide with an
increase in β (boosting new information), whereas in other
ranges α and β change in opposite directions. These pat-
terns reflect how the network coordinates the interplay be-
tween forgetting past data and incorporating new inputs.

First, α and β are learnable rather than fixed, undergoing
notable shifts throughout training to accommodate evolv-
ing tasks. Second, their correlated gradients reveal how the
model dynamically manages memory decay and integration
to address varying environments or data patterns. Third,
occasional extreme gradient values suggest training insta-
bility when balancing “forget–retain” operations, empha-
sizing the need for methods that mitigate abrupt parameter
changes. If further experiments show that final values of
α and β strongly influence performance—for instance, by
adopting larger α in scenarios requiring rapid forgetting—it
would confirm that this learnable gating mechanism indeed
supports the flexible discarding of outdated information.
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