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Supplementary Material

A. Overview
We begin by outlining the structure of this supplemen-
tary material. §B elaborates more details of Mamba and
discusses the difference between Mamba and transformer.
§C supplements more details of multi-modality representa-
tion learning. §D delves deeper into the analysis of other
components within our framework, providing both qualita-
tive and quantitative evaluations of our Modality Aligner
(HMB-M) and BEV Space Fusion (HMB-B). §E provides
results of different resolutions and backbones. §F presents
an efficiency analysis based on parameter count and infer-
ence speed. §G reports further results on the nuScenes test
dataset, including additional metrics such as mASE and a
detailed per-category mAP. §H delivers extensive evalua-
tions on Waymo and BEV segmentation that underscore the
generalizability of our method.

B. More Details of Mamba
Long-range modeling of Mamba. Rooted in linear sys-
tems theory [9], the State Space Model (SSM) [4, 5, 7, 8]
provides a robust framework for representing dynamical
systems. The continuous-time SSM is:

h′(t) = Ah(t) +Bx(t), (1)

y(t) = C⊤h(t) +Dx(t), (2)

where h(t) ∈ RC is the hidden state, y(t) ∈ RL is the
output, A governs system dynamics, B insert the input
x(t) to the state, C projects the state to output, and D al-
lows residual connection. To make continuous-time mod-
els feasible for real-world applications, they are approxi-
mated in discrete time using matrices A and B, derived
from their continuous counterparts with time step ∆. Af-
ter that, Mamba [5] introduces an input-dependent selection
mechanism, enabling the system to adaptively extract infor-
mation from the input sequence. In particular, B, C, and ∆
are predicted with discrete input xt. The matrix A, derived
from HiPPO [6], effectively captures long-range dependen-
cies by transforming global features into a compressed rep-
resentation. A is a matrix with following structure:

Ank =


√
(2n+ 1)

√
(2k + 1), if n > k

n+ 1, if n = k

0, if n < k

(3)

HiPPO enjoys favorable theoretical properties: it is in-
variant to input space/time scale [6]. In point cloud pro-
cessing, non-uniform spatial intervals arise from occlusion
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Figure 1. Time comparison between Mamba and Transformer.

and varying distances, complicating the application of many
linear attention mechanisms. Such long-range context mod-
eling broadens the scope of contextual reasoning, facilitat-
ing accurate discrimination between high-semantic distrac-
tors and targets and mitigating spurious or missed detec-
tions arising from occlusion or other challenges.
Content-based v.s. Position-based. A content-based in-
teraction focuses on the content of the context. In con-
trast, a position-based interaction emphasizes the relation-
ship between the query position and the context position.
Unlike the Transformer, which employs content-based in-
teraction, Mamba utilizes position-based interaction, which
relies more heavily on positional information. This distinc-
tion underscores the importance of accurate spatial cues,
thus motivating our design of Height-Fidelity LiDAR En-
coding and the Hybrid Mamba Block.
Computational Complexity. Fig. 1 demonstrates that as
the token number surpasses 4K, the computational cost per
transformer layer escalates sharply, rendering it impracti-
cal for perception tasks involving more than 16K tokens.
In contrast, the Mamba method exhibits remarkable scala-
bility, maintaining a nearly constant processing time even
when handling sequences of up to 16K tokens.

C. Multi-modality Representation Learning

This section provides a detailed description of the devel-
opment of a fusion framework incorporating the proposed
modules. Specifically, it covers: 1) the use of the HMB to
align the feature distributions of the two modalities, 2) the
application of height-fidelity point cloud features to con-
struct fusion in the raw 3D space using HMB, and 3) the in-
tegration of features in the BEV space through with HMB.
Modality Aligner. The point cloud and image modalities



differ fundamentally in both their raw data structures and
the characteristics of the features they extract. As a re-
sult, directly fusing these heterogeneous features can lead to
suboptimal performance. To address this issue, we propose
routing the features from both modalities through a shared
Hybrid Mamba Block (HMB), allowing them to exchange
information and align their feature distributions. This pro-
cess is akin to the behavior of ”normalization” layers.

F̂L, F̂I = HybridMamba(FL, FI, CP, CI), (4)

where CI ∈ RNimg×W×H×2 is coordinates of image fea-
tures FL ∈ RNvoxel×C , CP ∈ RNvoxel×3 is 3D coordinates
of voxel features FI ∈ RNimg×W×H×C .
Raw Space Fusion. After obtaining the features of consis-
tent distribution, it is imperative to establish a unified coor-
dinate system to fuse them. We first conduct fusion in the
image coordinate system, in which we project the 3D voxel
features with coordinates in raw space to the image planes
with the transformation matrices EP→I ∈ RNimg×4×4 .
Specifically, we can get the projected coordinates of point
cloud features Cj

P→I on the j-th image plane,

Cj
P→I = Ej

P→ICP. (5)

By establishing this unified coordinate representation, we
facilitate the seamless integration of features from both
modalities within our HMB,

F̃L, F̃I = HybridMamba(F̂L, F̂I, CP→I, CI). (6)

BEV Space Fusion. We also apply the proposed Hybrid
Mamba Block (HMB) to fuse the visual and point cloud fea-
tures in the BEV space, with the goal of generating a unified
multi-modal representation for the subsequent detection
head. Specifically, we employ the Lift-Splat-Shoot (LSS)
transformation [14] to project the multi-view image features
into the BEV space, obtaining F̃I→B ∈ RWb×Hb×C . Given
that many positions in the BEV space lack valuable infor-
mation, therefore, to ensure computational efficiency, we
downsample the spatial resolution of the visual BEV fea-
tures by half. The point cloud features are also transformed
to BEV space. It is worth noting that we only remove the
height information of the sparse point cloud features and
do not fill the vacant positions in the BEV space, thus no
additional computation is introduced. Finally, we concate-
nate the BEV features of the two modalities and fuse their
information with our proposed HMB,

Fbev = HybridMamba(F̃P→B, F̃I→B, CP→B, CI→B),
(7)

after which Fbev is fed into the detection head.
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(a) Distributions of features before Modality Aligner.
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(b) Distributions of features after Modality Aligner.

Figure 2. Visualization analysis of Modality Aligner.

Modality Aligner mAP NDS
① Without Aligner 71.2 73.7
② LayerNorm 71.0 73.2
③ HMB-M 71.9 74.3

Table 1. Ablation on different Modality Aligner.

D. Analysis of Other Components.

Analysis of the Modality Aligner. We evaluate the effi-
cacy of our feature alignment module through both visual-
ization and empirical experiments. As illustrated in Fig. 2,
we present the feature distributions obtained from the initial
modality tokenizers and compare them to the distributions
after applying the Modality Aligner. Owing to the intrinsic
differences between the two modalities, their feature distri-
butions are initially disparate, as shown in Fig. 2(a). How-
ever, effective feature fusion necessitates that these features
reside within similar distributions to facilitate seamless in-
tegration. To achieve this alignment, we use the Modality
Aligner, which brings the distributions of the two modal-
ities closer together. As depicted in Fig. 2(b), the distri-
butions of voxel and camera features become significantly
more aligned after alignment. This visualization highlights
the capability of our proposed component to effectively har-
monize feature spaces across modalities. Beyond visual
analysis, we conduct quantitative experiments to substan-
tiate the effectiveness of the Modality Aligner. According
to Tab. 1, incorporating the Modality Aligner enhances per-
formance metrics from 71.2 mAP and 73.7 NDS to 71.9



Figure 3. Visualization of camera features in BEV space before
with LSS (left) and with UniTR approach (right).

Figure 4. Visualization of camera features in BEV space before
(left) and after (right) downsample operation.

mAP and 74.3 NDS (① vs. ③). Furthermore, we observe
that simply applying LayerNorm to unify distributions not
only fails to yield improvements but actually degrades per-
formance (① vs. ②). This underscores that our Modality
Aligner offers a more sophisticated and effective approach
to feature alignment than basic normalization techniques.

Analysis of BEV Space Fusion. As illustrated in Fig. 3,
the LSS method yields more precise feature localization in
BEV space compared to the original approaches utilized in
UniTR. However, mapping image features into BEV space
via LSS substantially increases the number of features, re-
sulting in a highly sparse representation with numerous
zero-valued positions. To enhance the efficacy of feature
fusion, we apply downsample to the BEV features prior to
the fusion process. As shown in Fig. 4, this downsample
ameliorates the sparsity issue by increasing the information
density of the features. Nonetheless, excessive downsam-
pling can blur object boundaries, thereby degrading perfor-
mance. Tab 2 demonstrates that a downsample stride of 2
achieves optimal performance, underscoring the crucial im-
portance of selecting an appropriate downsample stride for
efficient feature fusion in our model.

Downsample Stride mAP NDS
① Without HMB-B 71.4 73.6
② 1 71.3 73.8
③ 2 71.9 74.3
④ 4 71.0 73.5

Table 2. Ablation on different downsample stride.

Resolution mAP NDS
1056 × 384 72.3 74.5
704 × 256 71.9 74.3

Resolution HFL mAP NDS
Swin-T+VoxelNet ✗ 70.2 72.7
Swin-T+VoxelNet ✓ 71.7 74.0

Ours ✗ 70.3 73.1
Ours ✓ 71.9 74.3

Table 3. Different resolutions(left) and backbones(right).

E. Different Resolutions and Backbones.
We evaluated how image resolution and backbone design
affect overall performance. As shown in Tab. 3(left), rais-
ing the resolution by a factor of 1.5 results in a 2.25-fold
increase in the number of tokens, yet yields only marginal
performance improvements. This observation highlights the
advantage of adopting a lower resolution to enhance com-
putational efficiency. Furthermore, Tab. 3(right) reveals
that the primary performance gains originate from Height-
Fidelity LiDAR Encoding (HFL) and our fusion strategy,
rather than from modifications to the backbone. These find-
ings emphasize the efficacy of our specialized feature rep-
resentation and fusion design.

BEVFusion (MIT) DAL IS-Fusion FusionMamba (Ours)
Params(M) 40.84 47.77 48.32 30.47

FPS 4.2 4.3 3.2 4.7

Table 4. Params(M) and FPS with current SOTA methods.

F. Efficiency Analysis
Tab. 4 highlights the efficiency of our method in terms
of both parameter count and inference speed. The re-
sults demonstrate that FusionMamba achieves state-of-the-
art performance without relying on a larger model or sacri-
ficing inference speed, underscoring that our performance
gains stem from a more effective design rather than in-
creased model complexity. Additionally, its compact and
efficient nature facilitates better transferability to other
tasks, enabling broader applicability.
Parameter Efficiency: FusionMamba maintains a
lightweight architecture with only 30.47M, which is signif-
icantly lower than BEVFusion (40.84M), DAL (47.77M),
and IS-Fusion (48.32M). FusionMamba achieves superior
results without excessive parameter growth, demonstrating
that efficient feature representation and fusion strategies
play a more crucial role than sheer scale.
Inference Speed: FusionMamba delivers an inference
speed of 4.7 FPS, outperforming the other methods (BEV-
Fusion at 4.2 FPS, DAL at 4.3 FPS, and IS-Fusion at 3.2



Method Present at mATE mASE mAOE mAVE mAAE mAP NDS
PointPainting [15] CVPR’20 38.0 26.0 54.1 29.3 13.1 54.1 61.0
PointAugmenting [16] CVPR’21 25.3 23.5 35.4 26.6 12.3 66.8 71.1
TransFusion [1] CVPR’22 25.9 24.3 32.9 28.8 12.7 68.9 71.7
AutoAlignV2 [3] ECCV’22 24.5 23.3 31.1 25.8 13.3 68.4 72.4
UVTR [11] NeurIPS’22 30.6 24.5 35.1 22.5 12.4 67.1 71.1
BEVFusion (MIT) [12] ICRA’23 26.1 23.9 32.9 26.0 13.4 70.2 72.9
DeepInteraction [19] NeurIPS’22 25.7 24.0 32.5 24.5 12.8 70.8 73.4
BEVFusion (ADLab) [13] NeurIPS’22 25.0 24.0 35.9 25.4 13.2 71.3 73.3
CMT [18] ICCV’23 27.9 23.5 30.8 25.9 11.2 72.0 74.1
SparseFusion [22] ICCV’23 25.8 24.3 32.9 26.5 13.1 72.0 73.8
DAL [10] ECCV’24 25.3 23.9 33.4 17.4 12.0 72.0 74.8
UniTR [17] ICCV’23 24.1 22.9 25.6 24.0 13.1 70.9 74.5
MambaFusion-Lite Ours 23.7 22.7 27.8 22.4 13.0 72.0 75.0
MambaFusion-Base Ours 23.3 22.3 26.8 21.5 13.2 73.2 75.9

Table 5. Comparisons on nuScenes test dataset. We present the Average Translation Error (mATE), mean Average Scale Error (mASE),
mean Average Orientation Error (mAOE), mean Average Velocity Error (mAVE), and mean Average Attribute Error (mAAE) of each
method. All present methods use a single model without any test time augmentation.

Method Modality mAP NDS Car Truck C.V. Bus T.L. B.R. M.T. Bike Ped. T.C.
PointAugmenting [16] L+C 66.8 71.0 87.5 57.3 28.0 65.2 60.7 72.6 74.3 50.9 87.9 83.6
MVP [21] L+C 66.4 70.5 86.8 58.5 26.1 67.4 57.3 74.8 70.0 49.3 89.1 85.0
TransFusion [1] L+C 68.9 71.7 87.1 60.0 33.1 68.3 60.8 78.1 73.6 52.9 88.4 86.7
AutoAlignV2 [3] L+C 68.4 72.4 87.0 59.0 33.1 69.3 59.3 78.0 72.9 52.1 87.6 85.1
UVTR [11] L+C 67.1 71.1 87.5 56.0 33.8 67.5 59.5 73.0 73.4 54.8 86.3 79.6
BEVFusion (PKU) [12] L+C 69.2 71.8 88.1 60.9 34.4 69.3 62.1 78.2 72.2 52.2 89.2 85.5
DeepInteraction [19] L+C 70.8 73.4 87.9 60.2 37.5 70.8 63.8 80.4 75.4 54.5 91.7 87.2
BEVFusion (MIT) [13] L+C 70.2 72.9 88.6 60.1 39.3 69.8 63.8 80.0 74.1 51.0 89.2 86.5
CMT [18] L+C 72.0 74.1 88.0 63.3 37.3 75.4 65.4 78.2 79.1 60.6 87.9 84.7
SparseFusion [22] L+C 72.0 73.8 88.0 60.2 38.7 72.0 64.9 79.2 78.5 59.8 90.9 87.9
ObjectFusion [2] L+C 71.0 73.3 89.4 59.0 40.5 71.8 63.1 80.0 78.1 53.2 90.7 87.7
IS-FUSION [20] L+C 73.0 75.2 88.3 62.7 38.4 74.9 67.3 78.1 82.4 59.5 89.3 89.2
DAL [10] L+C 72.0 74.8 89.1 60.2 34.6 73.3 65.8 80.6 81.7 58.5 89.6 86.6
UniTR [17] L+C 70.9 74.5 87.9 60.2 39.2 72.2 65.1 76.8 75.8 52.2 89.4 89.7
FusionMamba-Lite L+C 72.0 75.0 88.9 62.5 37.1 74.1 66.4 73.3 78.8 58.0 90.9 90.2
FusionMamba-Base L+C 73.2 75.9 89.4 63.8 39.1 75.1 68.0 75.0 80.7 59.5 91.4 90.6

Table 6. Comparison of different methods on mAP, NDS, and mAP of varying object categories. ‘C.V.’, ‘T.L.’, ‘B.R.’, ‘M.T.’, ‘Ped.’, and
‘T.C.’ indicate the construction vehicle, trailer, barrier, motorcycle, pedestrian, and traffic cone, respectively.

FPS). This efficiency ensures that our model maintains high
processing speed while achieving superior performance.

G. More Results of Test Set.
To rigorously evaluate perception algorithms in au-
tonomous driving, the nuScenes dataset provides a com-
prehensive suite of metrics. The mean Average Transla-
tion Error (mATE) quantifies the average positional discrep-
ancy between predicted objects and ground truth, assess-
ing localization accuracy. The mean Average Scale Error
(mASE) measures errors in estimating object sizes, reflect-
ing the precision of scale estimation. The mean Average

Orientation Error (mAOE) evaluates discrepancies in ori-
entation angles, indicating the model’s ability to accurately
predict object headings. The mean Average Velocity Er-
ror (mAVE) calculates errors in velocity predictions, pro-
viding insights into the accuracy of motion estimation for
dynamic objects. Lastly, the mean Average Attribute Error
(mAAE) assesses errors in predicting object attributes, such
as activity or state, thus evaluating the model’s capability to
infer additional semantic information. Collectively, these
metrics offer a multidimensional evaluation framework that
captures various critical aspects of perception performance
in autonomous driving systems.



As presented in Tab 5, our proposed method surpasses
existing approaches, particularly in mATE and mASE, indi-
cating superior accuracy in estimating object locations and
sizes. Moreover, our method achieves higher NDS scores,
reflecting enhanced overall performance. Additionally, as
shown in Tab 6, we report the mAP scores across different
categories, where our method attains top-tier performance
in most categories. These results substantiate the effective-
ness and robustness of our approach.

H. Extended Experiments
Method Modality mAP/mAPH (Waymo L2) mAP (Argo.)

Baseline-L (UniTR) L 74.0/72.1 38.6
UniTR L+C 74.9/73.6 41.2

Baseline-L (Ours) L 74.4/72.5 39.1
MambaFusion (ours) L+C 76.5/75.4 43.3

Table 7. Results on Waymo and Argoverse2.
Extend to Waymo Dataset. Beyond our evaluation of the
nuScenes dataset, which employs a 32-beam LiDAR sys-
tem, we extend our approach to the Waymo dataset which
is one of the most extensive and challenging benchmarks
in autonomous driving, offering 64-beam LiDAR data and
diverse environmental conditions. As detailed in Tab. ??,
our method consistently improves detection performance on
Waymo. In experiments using 20% of the Waymo data,
our single-modality baseline (Baseline-L (Ours)) achieves
mAP/mAPH scores of 71.3/69.8, closely matching the
LiDAR-only baseline of UniTR (71.2/69.5). When incor-
porating the camera modality, the UniTR method attains
scores of 72.3/70.9, whereas our proposed MambaFusion
method significantly enhances performance to 73.7/72.4.
This enhancement underscores the strong generalization ca-
pability of our multi-modal fusion strategy, demonstrating
its applicability across diverse autonomous driving datasets.

Method Mean IoU
UniTR 63.7

MambaFusion (ours) 65.3

Table 8. BEV map segmentation results (25% data).

Extend to BEV Segmentation. Improved extraction of
global contextual information is also essential for accu-
rate BEV segmentation. In the BEV segmentation con-
ducted on 25% of the nuScenes, our approach attains a
Mean Intersection-over-Union (IoU) of 65.3, surpassing the
63.7 achieved by UniTR. This advancement demonstrates
that our fusion method efficiently captures comprehensive
global features, thereby significantly enhancing segmenta-
tion precision, particularly regarding boundary delineation
and holistic scene understanding.
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