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6. Efficiency ablation

Hyperparameter Analysis Table |5 quantitatively eval-
uates our method’s sensitivity to key hyperparameters on
the GlossySynthetic benchmark. The default configura-
tion achieves optimal performance with 0.0038mm Cham-
fer distance (CD) and 2.7° normal error at 8 hours train-
ing time. Aggressive training time reduction degrades re-
construction quality non-linearly: -70% time (2.5h) in-
creases CD by 8% (0.0041mm) and normal error by 15%
(3.1°), while -75% time (2h) causes catastrophic failure
(0.0057mm CD). Memory-efficient 5123 hash grids main-
tain real-time performance (6h training) but increase CD by
18% due to aliasing in thin structures, while 2048 encoding
marginally improves quality (0.0037mm CD) at 1.5 x mem-
ory cost. Reflection depth analysis confirms ¢yax = 0.1 op-
timally balances multi-bounce modeling - smaller ty,x =
0.05 misses secondary reflections (+11% CD), while larger
tmax = 0.2 introduces floaters. Eikonal sensitivity v = 5.0
provides ideal surface regularization - lower v = 3.0 under-
constrains geometry (+18% CD), while v = 10.0 over-
smooths details. Clipping thresholds below 0.2 destabilize
training (+13% CD at 0.1 threshold). Strong CD-normal er-
ror correlation (R2=0.93) validates joint optimization of ge-
ometry and surface orientation. These results demonstrate
our method’s robustness to parameter variations while de-
fault settings balance accuracy and efficiency.

7. Textured 3D Multi-view Stereo Modeling

HiNeuS enables comprehensive textured reconstruction
pipelines through surface-aware rendering paradigms. As
shown in Fig. [I0] - Fig. [I2] our geometry-prioritized ap-
proach supports diverse downstream applications including
urban digital twins, i.e.via PBR appearance baking [5], real-
time assets synthesis, i.e.via Gaussian Splatting [16], and
mesh refinement, i.e.via NeRF2Mesh [32] integration. The
reconstructed HiNeusS surfaces serve as geometric scaffolds
that enforce physical constraints across different rendering
domains - from photogrammetric texturing of city blocks to
dynamic vehicle insertion in driving simulations. This uni-
fied framework bridges aerial photogrammetry, neural ren-
dering, and industrial visualization. The following subsec-
tions demonstrate how HiNeuS’ geometric fidelity enables
industrial-grade asset creation without sacrificing real-time
performance or material ambiguity.

7.1. PBR Texturing

Fig. 10| demonstrates a PBR texturing [5] workflow utiliz-
ing large-scale urban meshes reconstructed through aerial
imagery. The HiNeuS geometry in Fig.[T0|(a), spanning ap-
proximately 200 m x 200 m with rooftop-to-street-level de-
tail, receives photogrammetric texture projection from im-
ages captured by drones. We address dynamic inconsis-
tencies from transient objects, e.g.vehicles, pedestrians, by
extending visibility-based ambiguity handling to automati-
cally mask transient regions during texture baking via multi-
temporal imaging alignment. As shown in Fig. (b),
the final PBR-textured model maintains visual consistency
across static structures while realistically blending procedu-
rally generated road surfaces and vegetation patterns. This
pipeline enables a seamless transition from aerial recon-
struction to shaded 3D visualization for urban planning ap-
plications, preserving geometric fidelity without requiring
specialized material parameter estimation.

7.2. 3D Gaussian Splatting

As demonstrated in Fig. we showcase multiple distinct
real vehicles through 3D Gaussian Splatting initialized on
the reconstructed HiNeuS surfaces. Each subfigure displays
all vehicles in identical poses to illustrate geometry preser-
vation across different topologies. The HiNeuS meshes pro-
vide both positional and rotational priors: vertex coordi-
nates anchor 3D Gaussian primitive centers, while surface
normals constrain covariance orientation. This dual con-
straint maintains structural fidelity during splat deformation
for view-dependent effects.

Such pipeline achieves real-time rendering small LPIPS
perceptual error, outperforming neural Radiance Field base-
lines. As shown in Fig. complex components like tire
treads and windshield wipers retain HiNeuS’s original geo-
metric precision despite Gaussian positional jitter. Practical
simulation integration could be enabled through dynamic
environment blending. Scene lighting coefficients transfer
via spherical harmonic projection, while collision meshes
derive from the base HiNeuS topology. This permits di-
rect insertion into large-scale street scenarios without re-
meshing, where rendered vehicles could be rendered in a
physically plausible state in urban driving simulations.

7.3. Textured Mesh Decimation

We validate our method’s compatibility with downstream
mesh refinement pipelines by integrating HiNeuS surfaces
into the NeRF2Mesh framework [32]. As shown in Fig.



Aspect Variation CD Avg. (mm |) Normal error () Traintime Memory (GB)
Converging 8h 0.0038 2.7° 8h 12.4
pace -70% Training (2.5h) 0.0041 3.1° 2.5h 12.4
-75% Training (2h) 0.0057 4.9° 2h 12.4
Hash 10243 Hash 0.0038 2.7° 8h 12.4
config 5123 Hash 0.0045 3.8° 6h 8.1
20483 Hash 0.0037 2.5° 11h 18.6
timax 0.05 0.0042 3.3° 7h 12.4
0.1 (Default) 0.0038 2.7° 8h 124
0.2 0.0040 2.9° 9h 124
Eikonal v=3.0 0.0045 3.6° 8h 12.4
error v = 5.0 (Default) 0.0038 2.7° 8h 12.4
sensitivity v =10.0 0.0039 2.8° 8h 12.4
Clip threshold | 0.1 0.0043 3.4° 8h 12.4
0.2 (Default) 0.0038 2.7° 8h 12.4
0.3 0.0041 3.0° 8h 12.4

Table 5. Additional ablations on GlossySynthetic dataset.

(a) HiNeuS

(b) PBR texturing

Figure 10. PBR texturing (b) towards a HiNeuS mesh (a) on UrbanScene3D [23]] dataset for a city block.

replacing the original density-derived meshes with HiNeuS
geometries during Stage-1 initialization enables higher-
fidelity texturing through surface-aware neural rendering.
Compared to the baseline NeRF2Mesh pipeline, our ap-
proach better preserves thin structures - Lego flower petals
show reduced voxelization artifacts while vine leaves crawl-
ing on a trunk retain their organic existence and curva-
ture without fragmentation. This improvement stems from
HiNeuS’ high-fidelity surface precision, which provides

more precise topological priors for NeRF2Mesh [32]]’s
adaptive vertex decimation module. The hybrid pipeline
demonstrates how our geometry-first reconstruction syner-
gizes with appearance-focused refinement techniques, over-
coming the mutual dependencies between neural radiance
fields and surface extraction that limit traditional NeRF-
based workflows.



8. Future Works

While HiNeuS advances neural surface reconstruction, sev-
eral promising directions remain open. Enhancing recon-
struction quality for occluded regions in limited-view sce-
narios could integrate uncertainty-aware radiance fields that
explicitly model unobserved geometry through Bayesian
neural networks. This would allow probabilistic comple-
tion of occluded structures using semantic priors from foun-
dation models. For deformable scenes, extending the SDF
formulation with spacetime embeddings could enable non-
rigid surface tracking, where a temporal Eikonal constraint
regularizes the deformation field’s Jacobian determinants.

The method’s industrial adoption would benefit from
real-time adaptive sampling strategies that prioritize sur-
face regions near sensor viewpoints in autonomous driving
scenarios. This could couple our planar-conformal regular-
ization with LiDAR intensity maps to handle asphalt sur-
faces with millimeter-scale undulations. Another direction
involves simultaneous material-aware SDFs that disentan-
gle BRDF parameters during reconstruction, enabling direct
export of physically-based rendering assets without post-
processing.

Scaling to city-level reconstructions may require hier-
archical SDF hashing with dynamic level-of-detail, where
our local geometry constraints could adaptively relax in ar-
eas beyond sensor coverage. Finally, integrating differen-
tiable physics engines with our Gaussian Splatting pipeline
( Sec. [/) could simulate vehicle dynamics directly from
reconstructed textured surfaces, closing the loop between
neural reconstruction and robotics simulation.



Figure 11. 10 distinct 3D Gaussian Splatting vehicle assets in 3DRealCar [8] dataset.




"

Y

(a) NeRF2Mesh (b) NeRF2Mesh with HiNeu$S

Figure 12. Mesh textured by NeRF2Mesh trained on top of HiNeusS surfaces.
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