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1. Spatial Position Rules
Assuming the coordinates of the centroid pixel hi are
(xi, yi), we compare these coordinates based on positional
descriptions to select the target instance that satisfies the
given spatial relationship. We design 12 rules to address
possible directional descriptions in the text. The first eight
apply when the referenced object’s position is easily de-
scribable, while the last four handle more complex cases,
such as selecting an intermediate object among multiple in-
stances:

1. Up: Select the instance with the highest position, i.e.,
the one with the largest yi:

i∗ = argmax
i

{yi}, ∀i ∈ {1, 2, . . . , k}.

2. Down: Select the instance with the lowest position,
i.e., the one with the smallest yi:

i∗ = argmin
i
{yi}, ∀i ∈ {1, 2, . . . , k}.

3. Left: Select the instance that is furthest to the left, i.e.,
the one with the smallest xi:

i∗ = argmin
i
{xi}, ∀i ∈ {1, 2, . . . , k}.

4. Right: Select the instance that is furthest to the right,
i.e., the one with the largest xi:

i∗ = argmax
i

{xi}, ∀i ∈ {1, 2, . . . , k}.

5. Top-left: Select the instance that is furthest up and to
the left, i.e., the one with the smallest xi and the largest yi:

i∗ = argmax
i

{yi − xi}, ∀i ∈ {1, 2, . . . , k}.

6. Top-right: Select the instance that is furthest up and
to the right, i.e., the one with the largest sum of xi and yi:

i∗ = argmax
i

{xi + yi}, ∀i ∈ {1, 2, . . . , k}.

7. Bottom-left: Select the instance that is furthest down
and to the left, i.e., the one with the smallest sum of xi and
yi:

i∗ = argmin
i
{xi + yi}, ∀i ∈ {1, 2, . . . , k}.

8. Bottom-right: Select the instance that is furthest down
and to the right, i.e., the one with the largest xi and the
smallest yi:

i∗ = argmin
i
{yi − xi}, ∀i ∈ {1, 2, . . . , k}.

9. N -th from the left: Select the Nth instance from the
left by sorting xi in ascending order:

i∗ = arg min
i∈SN

{xi}, SN = σ↑(xi), ∀i ∈ {1, 2, . . . , k},

where σ↑ denotes the ascending function.
10. N -th from the right: Select the Nth instance from the

right by sorting xi in descending order:

i∗ = arg max
i∈SN

{xi}, SN = σ↓(xi)xi, ∀i ∈ {1, 2, . . . , k},

where σ↓ denotes the descending function.
11. N -th from the bottom: Select the Nth instance from

the bottom by sorting yi in ascending order:

i∗ = arg min
i∈SN

{yi}, SN = σ↑(yi), ∀i ∈ {1, 2, . . . , k}.

12. N -th from the top: Select the Nth instance from the
top by sorting yi in descending order:

i∗ = arg max
i∈SN

{yi}, SN = σ↓(yi), ∀i ∈ {1, 2, . . . , k}.

Finally, it is necessary to emphasize that our spatial re-
lationships represent the relative rather than absolute posi-
tioning between multiple objects. We do not rigidly divide
the image into fixed regions. For example, two people in the
right area can be referred to as the “left” or “right person.”

2. Architecture of Image Fusion Network
Holistically, our image fusion network receives multi-
source images and text as input, and uses pseudo labels as
supervisory signals. Specifically, this network consists of
two stages: outputting the mask based on text localization
instances and implementing two different fusion modes ac-
cording to the mask.

First, we employ Restormer [10] blocks to extract fea-
tures of the infared image Iir and the visible image Ivis, as
follows:

Fir = Eir(Iir), Fvis = Evis(Ivis), (1)

where Eir and Evis denote the infrared visual feature en-
coder and the visible light visual feature encoder, respec-
tively. Next, the extracted visual features Fir and Fvis are
concatenated and passed through the visual feature fusion
module U to obtain a unified visual feature V .

V = U(Fir ⊕ Fvis), (2)



where U represents the interaction operation via Restormer
blocks [10]. Simultaneously, we utilize CLIP’s text encoder
with frozen weights to process the text t and obtain the text
feature Ft, as follows:

Ft = CLIPtext(t), (3)

where CLIPtext denotes CLIP’s text encoder.
Then, we construct an FPN (Feature Pyramid Network)

using convolutional layers to enable multi-scale interaction
between the text feature Ft and the unified visual feature V ,
ultimately yielding the positioning map P , i.e.,

P = S(F(V, Ft)), (4)

where F represents the FPN, S represents the sigmoid op-
eration. P is a binary image representing the location of the
object referred to by the text. The white region indicates the
ROI (Region of Interest), while the black region represents
the non-ROI.

Subsequently, we utilize the positioning map P to per-
form Hadamard product with Fir and Fvis, obtaining the
feature representations of the ROI and non-ROI regions
from the two source images, denoted by Fir_ROI , Fvis_ROI ,
Fir_non−ROI , and Fvis_non−ROI . Since different fusion
modes are applied to the ROI and non-ROI regions, this
step prepares for their independent fusion, preventing in-
terference between the two regions.

Fir_ROI = P ⊙ Fir, (5)

Fvis_ROI = P ⊙ Fvis, (6)

Fir_non−ROI = (1− P )⊙ Fir, (7)

Fvis_non−ROI = (1− P )⊙ Fvis, (8)

where ⊙ denotes the Hadamard product.
Next, we use Restormer blocks MROI to fuse the fea-

tures of ROI regions, as follows:

FROI = MROI(Fir_ROI , Fvis_ROI). (9)

For non-ROI regions, we also use Restormer blocks
Mnon−ROI but without shared weights, as follows:

Fnon−ROI = Mnon−ROI(Fir_non−ROI , Fvis_non−ROI).
(10)

Finally, we input FROI and Fnon−ROI into the image re-
construction decoder D which consists of Restormer blocks
to obtain the final fused image F :

F = D(FROI , Fnon−ROI). (11)

Clearly, we avoid directly computing the loss between
the pseudo-labels and P ; instead, we use them as a posi-
tional reference. Through supervision from two loss func-
tions during training (Eq. X-Eq. X in the main text), the net-
work is forced to learn: (1) accurate localization based on
the text, i.e., generating P that closely matches the pseudo-
labels, and (2) correctly applying the two fusion modes.
Therefore, during inference (fusion), our model only re-
quires the image fusion network, without needing the stage
I model.

3. Why is our multimodal feature alignment
module necessary?

Although there are many established multimodal feature
alignment methods, they are not fully applicable to our task
due to the following reasons:

Task-Specific Requirements: Existing methods, such
as those based on cross-modal attention mechanisms [6],
canonical correlation analysis [3], and contrastive learning
[7], typically aim to align global features or focus on align-
ing image and text representations in a general sense. How-
ever, our task requires fine-grained, instance-level align-
ment where specific object instances need to be localized
and highlighted based on user input. Most existing methods
fall short of addressing this level of specificity.

Manifold Structure of Multimodal Data: Previous
methods generally assume a linear or simple metric space
for alignment, but multimodal data, particularly in the case
of image and text, often exist in complex, nonlinear mani-
fold spaces [4, 8]. These methods fail to fully exploit the
manifold structure that underlies multimodal interactions.
In contrast, our approach leverages manifold similarity as
a guiding prior, which captures the intrinsic geometric rela-
tionships between image patches and text tokens. This prior
allows for more precise alignment, especially for tasks re-
quiring high semantic accuracy.

Weakly Supervised Training: Many alignment ap-
proaches rely on large, fully annotated datasets with paired
samples for supervised training. However, in our domain,
instance-level annotations for multimodal datasets, such as
VIS-IR image pairs with corresponding object labels, are
either unavailable or highly limited. To address this, we
propose a weakly-supervised alignment strategy that gener-
ates pseudo-labels using text-to-image similarity, avoiding
the need for ground truth annotations.

Bidirectional Alignment: Existing methods predomi-
nantly align features in one direction (e.g., from text to im-
age or vice versa). This unidirectional alignment is often
insufficient when dealing with complex multimodal inter-
actions where both modalities need to inform each other.
Our method introduces bidirectional alignment, ensuring
that both text and image features are jointly refined, enhanc-
ing the quality of the fusion output.
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Figure 1. Qualitative results of ablation study on TIRN.

Thus, the unique combination of task-specific instance-
level alignment, the utilization of manifold similarity as a
geometric prior, weakly-supervised learning, and bidirec-
tional feature alignment distinguishes our method from ex-
isting solutions, enabling more effective feature alignment.

4. Comparison with SOTA
Because of space constraints in the main paper, we provide
additional qualitative comparison results for various VIS-
IR fusion models here, as shown in Fig. 4. It is evident that
the uncontrollable image fusion model cannot tailor fused
images based on textual input, aligning with the analysis in
the Introduction. For the controllable image fusion models,
both TextFusion and our model are capable of generating
images based on text. However, TextFusion can only high-
light multiple objects at the semantic level without precise
instance-level localization, whereas our model achieves this
level of specificity.

5. Ablation Study
To effectively evaluate the first stage of our model, we con-
struct a VIS-IR dataset that includes text descriptions re-
ferring to instance-level objects and binary masks (ground
truth, GT) indicating their locations. To obtain these GT
masks, we first utilize a large vision foundation model for
segmentation [5] to generate preliminary instance segmen-
tation maps. We then select the corresponding instances
based on different textual cues and manually refine these
maps to ensure accuracy. The numerical results of the abla-
tion experiment, as listed in Table 2 of the main paper, are
calculated based on these refined GT maps.

Here, we present qualitative comparison results of abla-
tion experiments in the main paper. As shown in Fig. 1, Fig.
2, and Fig. 3, removing the proposed modules leads to a
significant drop in the quality of response maps and pseudo-
labels, demonstrating the effectiveness of TIRN, MFA, and
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Figure 2. Qualitative results of ablation study on MFA.
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Figure 3. Qualitative results of ablation study on instance selection
module.

the instance selection module.

6. Validation of the Necessity of Tailored In-
stance Localization for VIS-IR

As discussed in Sections 1 and 2.2 of the main paper, RIS
models designed for natural images are unsuitable for object
localization in VIS-IR. To verify, we test several RIS mod-
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Figure 4. Qualitative comparison of various fusion models. The first nine algorithms are non-controllable fusion models, producing static
results regardless of text input. TextFusion and our model are controllable fusion models, displaying fusion results for two different text
inputs. TextFusion can only highlight multiple semantic-level objects, whereas our model specifically highlights the referenced instance.



Table 1. Qualitative comparison of our localization method with
RIS models on VIS and IR images. Existing RIS models, designed
for natural images, can only take either infrared or visible images
as single inputs, lacking the ability to integrate complementary
information from both modalities for localizing referred objects.

Methods Precision@0.5 MIoU
LAVT-RIS(Input:IR) 0.000 3.062
LAVT-RIS(Input:VI) 0.787 2.820
VLT-RIS(Input:IR) 0.787 2.401
VLT-RIS(Input:VI) 0.787 1.910
MG-RIS(Input:IR) 25.984 27.811
MG-RIS(Input:VI) 33.070 34.777

Ours(Input:IR and VI) 73.228 66.065

Table 2. Time overhead comparison of various fusion models on
two test datasets.

Test Sets CDDFuse DDcGAN EMMA MetaFusion MUFusion
TNO 0.0319s 14.8790s 0.3181s 0.0040s 6.9263s

M3FD 0.0329s 26.5890s 0.4074s 0.0030s 19.2424s
Test Sets MURF SDNet U2Fusion FILM Ours

TNO 0.0873s 0.0573s 4.3100s 0.6302s 0.3125s
M3FD 0.1701s 0.0584s 0.3583s 0.6384s 0.5587s

els (LAVT [9], VLT [2], MG [1]) on IR and VIS images.
Unlike these models, which process only single images and
yield suboptimal results due to modality limitations, our
VIS-IR-tailored method takes two images as input to cre-
ate a joint visual representation, reducing localization diffi-
culty. Numerical results are listed in Table 1, demonstrating
that our model is able to generate more accurate pseudo-
labels. Qualitative comparisons are presented in Section 4.5
of the main paper.

7. Runtime Analysis

Table 2 lists the runtime of 10 fusion models. MetaFusion
and CDDFuse are faster due to their lower computational
complexity. Our model ranks 5th, with an acceptable run-
time. The additional processing time is attributed to han-
dling the extra text modality data, which is necessary for
our model’s functionality. Experiments are conducted on a
machine with an RTX 4090 GPU, i9-14900K CPU, 128GB
RAM, and PyTorch 2.3.0.
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