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Supplementary Material

1. MCR Algorithm Details
The MCR algorithm is detailed in Algorithm 1, which is
used to reconstruct polygon contours and align them with
ground truth polygons.

Algorithm 1 Mask Contour Reformer

1: Input: S, G = [g1, g2, . . . , gM ], ϵ, l
2: Output: R, G′, C
3: S′ = [s′1, s

′
2, . . . , s

′
m] ▷ DP simplification with ϵ

4: For each (s′i, s
′
i+1) in S′ (with s′m+1 = s′1 if closed):

5: v⃗i = s′i+1 − s′i, qi = ∥v⃗i∥, v̂i = v⃗i/qi
6: Ki = ⌊qi/l⌋
7: [s′i + kdv̂i for k = 0 to Ki] + [s′i+1]
8: R = [r1, r2, . . . , rN ] ▷ Concatenate all points
9: For each gj ∈ G:

10: rkj
= argminr∈R ∥r − gj∥

11: Vertices: {rkj
|j = 1, 2, . . . ,M}

12: Indices: i1 < i2 < · · · < iM in R
13: For each k = 1 to M (with iM+1 = i1 if closed):
14: nk = ik+1 − ik − 1
15: pk,m = gk + m

nk+1 (gk+1 − gk) for m = 1 to nk

16: G′ = [g1, p1,1, . . . , p1,n1 , g2, . . . , gM , pM,1, . . . , pM,nM
]

17: C = [c1, . . . , cN ], ci = 1 if ri is a vertex, else 0
18: Return R,G′, C

2. Metrics for Evaluation
For a comprehensive assessment of semantic segmentation,
instance segmentation, and vector generation quality, we re-
port three widely used categories of metrics: semantic met-
rics, instance metrics, and vector metrics.

Vector Metrics. Vector metrics include PoLiS [1] and
Complexity-aware IoU (C-IoU) [9]. For two given poly-
gons A and B, PoLiS is defined as the average distance
between each vertex aj ∈ A, j = 1, . . . , q, of A and its
closest point (b) on the boundary ∂B, and vice versa. As-
suming polygon B has vertices bk ∈ B, k = 1, . . . , r, the
PoLiS metric [1] is expressed as:

PoLiS(A,B) =
1

2q

∑
aj∈A

min
b∈∂B

∥aj − b∥

+
1

2r

∑
bk∈B

min
a∈∂A

∥bk − a∥ ,
(1)

where 1
2q and 1

2r are normalization factors. The IoU thresh-
old for filtering predicted building polygons is set to 0.5,

following [8]. A lower PoLiS value indicates greater sim-
ilarity between predicted and ground truth polygons. The
Complexity-aware IoU (C-IoU) [9] is also computed for
polygon evaluation, defined as:

C-IoU(A,B) = IoU(Am, Bm) · (1−RD(NA, NB)) , (2)

where IoU(Am, Bm) denotes the standard IoU between the
polygon masks Am and Bm, and RD(NA, NB) = |NA −
NB |/(NA+NB) represents the relative difference between
the number of vertices NA in polygon A and NB in poly-
gon B. C-IoU balances segmentation and polygonization
accuracy while penalizing both oversimplified and overly
complex polygons relative to the ground truth complexity.

For the road dataset, we also report the Average Path
Length Similarity (APLS) metric [6], which measures road
network similarity by comparing the path lengths between
node pairs in the predicted and ground truth graphs. The
APLS metric is defined as follows. Given a ground-truth
graph Ggt and a predicted graph Gpred, the APLS is com-
puted based on the symmetric difference of shortest path
lengths between all reachable pairs of nodes in both graphs:

APLS = 1− 1

|P |
∑

(i,j)∈P

|dpred(i, j)− dgt(i, j)|
dgt(i, j)

where P is the set of all node pairs (i, j) with valid paths
in Ggt, dgt(i, j) is the shortest path length between nodes i
and j in the ground truth graph, and dpred(i, j) is the cor-
responding path in the predicted graph. The APLS value
ranges from 0 to 1, with higher values indicating better
topological alignment.

Instance Metrics. Instance metrics adopt the standard
COCO measure, mean Average Precision (AP), calculated
over multiple Intersection over Union (IoU) thresholds. AP
is averaged across ten IoU values ranging from 0.50 to 0.95
with a step size of 0.05, rewarding detectors with better lo-
calization. Additionally, AP(S,M,L) is used to evaluate per-
formance on objects of different sizes. Given that geograph-
ical instances occupy more pixels in large-size very-high-
resolution (VHR) remote sensing images, we redefine size
categories relative to the COCO standard: small, medium,
and large correspond to areas < 1282, between 1282 and
5122, and > 5122 pixels, respectively, where the area is
measured as the number of pixels in the segmentation mask.

Semantic Metrics. Semantic metrics include the F1-
score and Mean Intersection over Union (MIoU). The F1-
score, the harmonic mean of Precision and Recall, provides



Table 1. Comparison with segmentation method on WHU-Building.

Method PoLiS ↓ CIoU AP APs APm APl IoU F1

HRNet + DP 6.10 50.01 48.13 26.58 70.59 38.60 86.51 92.68
HRNet + PST 5.91 61.51 49.01 26.59 71.30 50.74 86.48 92.67
CAN + DP 4.02 60.32 58.42 37.50 79.76 49.13 91.50 95.52
CAN + PST 3.63 82.30 61.07 40.37 80.30 60.00 91.60 95.41

Table 2. APLS metric comparison with various vectorization methods.

Metric TS-MTA LCF-ALE DeepSnake E2EC FFL UniVec HiSup Ours

APLS 14.49 15.67 11.26 11.59 12.68 10.22 20.46 28.35

a comprehensive evaluation of model performance. MIoU,
the average ratio of intersection to union between predicted
and ground truth segmentation results, reflects the model’s
overall segmentation effectiveness across the entire image.

3. Implementation Details
Details of VHR-road Dataset. The VHR-road dataset is
comprised of high-resolution remote sensing imagery of
major urban areas in France, acquired from BD ORTHO
[4]. The corresponding raw road labels are sourced from
European Union’s Copernicus Land Monitoring Service in-
formation [3]. We subsequently filter and rectify inaccura-
cies within these labels, culminating in a final dataset of 208
image tiles, each with a dimension of 12500×12500 pixels.

Hyperparameter Settings. When constructing the
multi-scale pyramid, we set the scale factors d to {1, 3,
6} for buildings and {1, 5, 10} for water bodies and roads.
During boundary point reconstruction, the Douglas-Peucker
simplification parameter ϵ is set to 5. For small targets such
as buildings, the interpolation distance l is set to 25, while
for larger targets like water bodies and roads, it is set to 50.

Training Process. HoliTracer involves two training pro-
cesses. For CAN training, we employ the Adam optimizer
with a learning rate of 0.0001. For PST training, we use
the Adam optimizer with a learning rate of 0.01. All loss
function hyperparameters are set to 1, and the angle penalty
term θthreshold is fixed at 135 degrees. All experiments are
conducted using the PyTorch framework on four NVIDIA
A100 GPUs.

4. Supplementary Experiments
Comparison with Segmentation Methods and Flexibil-
ity of PST. Table 1 presents direct comparisons with the
segmentation-based method HRNet [7], showing the su-
perior performance of our Context Attention Net (CAN).
Although the main focus is on vectorization methods,
segmentation-based approaches are also considered, such
as Hisup, which uses HRNet as its backbone. To evalu-

ate the flexibility of the proposed PST, the table also re-
ports results for HRNet+PST and HRNet+DP simplifica-
tion. PST consistently achieves better performance in vec-
torizing general segmentation masks. While CAN enhances
PST’s performance on large-size RSI within the complete
HoliTracer pipeline, these results demonstrate PST’s gen-
eral utility across different segmentation outputs.

Evaluation with APLS Metric. To further evaluate
the quality of road network vectorization, the Average Path
Length Similarity (APLS) metric is adopted. Table 2 reports
the APLS scores for different methods on the road dataset.

Computational Efficiency and Scalability. Table 3
summarizes the computational complexity and inference
performance of HoliTracer. Although HoliTracer has more
parameters and a higher computational load compared to
lightweight methods, the overhead remains acceptable for
vectorization tasks, which typically do not require real-
time processing. HoliTracer processes large images di-
rectly, eliminating the need for patch-wise inference and
subsequent stitching. This design reduces total inference
time. Scalability experiments confirm that HoliTracer han-
dles images up to 40,000 × 50,000 pixels using 64GB of
CPU RAM. Our implementation also includes GPU-based
parallelism for inference on large images, providing robust
scalability across different computational environments.

5. Supplementary Ablation Studies

To further investigate the effectiveness of the image pyra-
mid within CAN and the PST, we conduct additional ab-
lation studies on the other two datasets. This also serves
to justify our choice of different hyperparameter settings
across datasets.

Table 5 reports ablation studies on the image pyramid
within CAN. We compare different scale settings on three
datasets. The results show that scales {1, 3, 6} work best
for buildings, while {1, 5, 10} perform best for water bod-
ies and roads. This indicates that smaller buildings need less
context, and too much context may harm performance. In



Table 3. Computational cost analysis on WHU-Building

Method Training Time (h) Params (M) GPU Memory (G) Infer Time (s/sample)

HiSup [8] 10.86 74.29 0.48 2568.89
Ours CAN 16.27 268.52 1.88 125.31
Ours MCR - - - 132.78
Ours PST 15.66 43.24 1.25 200.01
Ours (ALL) 31.93 311.76 1.88 458.10

Table 4. The ablation studies on the PST.

Dataset Vectorize method
Vector metrics Instance metrics Semantic metrics

PoLiS ↓ CIoU AP APs APm APl IoU F1

WHU-Building
Baseline1 3.83 18.47 58.75 37.87 79.85 49.13 91.55 95.54
Baseline1 + DP [2] 4.02 60.32 58.42 37.50 79.76 49.13 91.50 95.52
Baseline1 + PST 3.63 82.30 61.07 40.37 80.30 60.00 91.60 95.41

GLHWater
Baseline1 82.85 26.74 20.30 10.48 35.44 58.25 85.76 91.55
Baseline1 + DP [2] 83.72 55.08 20.31 10.53 35.34 58.25 85.74 91.54
Baseline1 + PST 82.42 57.88 20.84 10.08 38.08 70.35 85.50 91.40

VHRRoad
Baseline1 135.05 1.43 1.71 0.08 0.43 3.74 46.80 61.03
Baseline1 + DP [2] 138.01 5.41 1.70 0.08 0.42 3.74 46.65 60.88
Baseline1 + PST 134.13 6.10 1.58 0.08 0.40 3.99 46.48 60.63

1 Using TC89-KCOS [5] to extract polygon contours.

Table 5. The ablation studies on the image pyramid within CAN.

Dataset Context IoU F1

WHU-building

1 91.23 95.29
1, 3, 6 92.21 95.94
1, 4, 8 92.12 95.68
1, 5, 10 92.14 95.72

GLH-water

1 85.73 91.14
1, 3, 6 86.45 92.59
1, 4, 8 86.90 93.00
1, 5, 10 87.95 93.59

VHR-road

1 48.35 65.09
1, 3, 6 49.74 66.32
1, 4, 8 49.69 66.40
1, 5, 10 50.47 67.09

contrast, larger and more connected water bodies and roads
benefit from more contextual information. Note that seg-
mentation is evaluated at the pixel level, so semantic metrics
differ from vectorized semantic metrics.

Table 4 presents ablation studies on the PST. Comparing
the baseline and PST methods across three datasets, PST
notably improves vector and instance metrics. Although
semantic metrics slightly decrease, PST achieves better in-
stance extraction and vector representation.

Baseline Baseline + DP Baseline + PST

Figure 1. The visualization of output polygons of different meth-
ods.

6. Supplementary Visualization Results

We provide additional visualization results on the WHU-
building, GLH-water, and VHR-road datasets in Fig. 1,
Fig. 2 and Fig. 3. Fig. 1 illustrates the output polygons
of different methods, including the baseline method us-
ing TC89-KCOS for polygon contour extraction, baseline
with DP simplification, and baseline with our proposed
PST. Fig. 2 displays the vectorization results of all baseline
methods and our HoliTracer on the WHU-building, GLH-
water, and VHR-road datasets. Fig. 3 presents the vec-
torization results of HoliTracer on large-size RSI. The re-
sults demonstrate that HoliTracer produces more accurate
and complete vector representations compared to existing
patch-based methods, and it effectively handles diverse ge-
ographic objects across large-size RSI.



Groud Truth HiSup OursTS-MTA LCF-ALE DeepSnake E2EC FFL UniVec

(a) Building

(b) Water body

(c) Road

Figure 2. Visualization of vectorization results of the all methods on WHU-building, GLH-water, and VHR-road test datasets. Our method
produces more accurate and complete vector representations compared to existing patch-based methods.
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