
How Do Multimodal Large Language Models Handle Complex Multimodal
Reasoning? Placing Them in An Extensible Escape Game

Appendix

A. Full Takeaway Observations

• Distinct human-like behavioral patterns: There are dis-
tinct behavioral patterns among different models in the
room escape task. GPT-4o and Gemini exhibit the most
human-like behavior, but the patterns differ from each
other. For example, GPT-4o demonstrating stable view-
point control and deliberate movements. At beginning
steps, it tends to walk around with large distances and
observe the surroundings in a wide range. While Gemini
tends to look around before taking further actions to move
to other locations. Some other models tend to shift their
perspectives arbitrarily, leading to inefficient exploration.
Gemini frequently gets stuck, struggling with spatial nav-
igation, while Phi-3 exhibits a tendency to continuously
rotate in place with minimal actual movement, hindering
effective exploration.

• Robustness towards system prompts: Most of the models
are faithful to the system instruction. They are aware of
the ultimate target, to locate the door and make a way
out, and are not easily distracted by findings during the
exploration, except for Phi-3 who always fail to generate
required actions with valid and interactable items.

• Common failure modes: However, significant limitations
persist across all model, including GPT-4o sometimes.
A common failure mode is inaccurate object positioning
within the field of view. Models often fail to center the
target object, which is indicated by a guiding red dot in
our environment, precisely suggesting the objects to in-
teract with. This often leads to unsuccessful interactions
such as grabbing or entering for password. Furthermore,
some models struggle with tool utilization, particularly in
cases requiring abstract reasoning, such as correctly ap-
plying a password to unlock a door.

B. Human Evaluation

We conduct manual evaluation on MM-Escape, and re-
port detailed results in Table 6. Human participants in Es-
capeCraft exhibit a clear understanding of how to complete
tasks efficiently. By observing objects in the environment,
they can make reasonable judgments about which items to
pick up, leading to a higher success rate in effective item
acquisition and usage. Additionally, when unable to open
doors or interactable objects, humans are more adept at
promptly shifting their approach to seek alternative clues in
the environment rather than getting stuck. In terms of spa-
tial awareness, they demonstrate a strong ability to perceive

the relative positions of objects, enabling logically reason-
able, smoother and more coordinated exploratory actions.
Across Difficulty-1 to 3, human participants consistently
identify all necessary items with less interaction attempts
compared with MLLMs, and successfully complete all the
tasks within a limited number of steps.

C. Construction Details

C.1. Environment Construction
C.1.1. Room Generation
We adopted the automated 3D room generation method
ProcTHOR, with additional improvements to enhance
its flexibility and applicability regarding diverse type of
scenes. Following Procthor, we generate 3D environments
that can simulate diverse real-world scenes, such as bed-
rooms, living rooms, and offices by maintaining collections
of typical objects that are common in different scenes. For
instance, desks in offices, workbenches in laboratories, and
other representative objects of corresponding scenes. We
enable automatic creation of 3D rooms from the collections
of each scenes, ensuring that the generated rooms accu-
rately reflect their respective environments.

We use a configuration file to generate each room, spec-
ifying the items along with required styles, positions, sizes,
and interactivity. This enables precise control over the
placement of prop objects, ensuring that they are arranged
in a manner aligning with real-world expectations on spatial
arrangement.

Benefits of the Automated 3D Room Generation include:
• Diversity and Complexity: By automatically generating a

variety of 3D rooms, we can provide the model with di-
verse environments, ensuring that it is capable of handling
various layouts, objects, and puzzle elements. This diver-
sity is critical in assessing the model’s ability to reason
in different scenarios, evaluating its performance when
confronted with unknown and complex situations. More-
over, the ability to create different configurations on the
fly means the model will not be limited to predefined en-
vironments, which helps to prevent overfitting to specific
room layouts.

• Enhanced Realism: Unlike manually designed fixed
scenes, automatically generated 3D environments can
simulate more natural and irregular spatial layouts. This
is essential for training and evaluating agents on spatial
reasoning, pathfinding, and interaction skills. By incor-
porating a wide range of room designs, we create more



Metrics Scene

0 1 2 3 4 5 6 7 8 9 10
Difficulty-1

Steps 10 3 7 7 5 5 6 3 7 4 6
Prop Gain(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Grab Count 2 1 1 1 1 1 1 1 1 1 1

Grab Success(%) 50.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Difficulty-2

Steps 23 17 10 8 9 13 15 8 16 20 11
Prop Gain(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Grab Count 3 3 2 2 2 3 3 2 3 3 2

Grab Success(%) 66.67 66.67 100.00 100.00 100.00 66.67 66.67 100.00 66.67 66.67 100.00
Difficulty-3 (note-key)

Steps 22 20 21 17 23 27 18 16 22 23 27
Prop Gain(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Grab Count 4 5 4 4 4 5 3 3 4 4 5

Grab Success(%) 75 60 75 75 75 60 100 100 75 75 60
Difficulty-3 (key-note)

Steps - 22 21 19 18 20 24 16 27 17 18
Prop Gain(%) - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Grab Count - 4 4 4 5 5 6 4 5 4 4

Grab Success(%) - 75 75 75 60 60 50 75 60 75 75

Table 6. Detailed results for various levels.Since humans completed all escape tasks in the evaluation, the escape rate is 100% and not
reflected above.

realistic scenarios in which agents must navigate, interact
with objects, and solve problems, similar to real-world
challenges.

• Efficiency: The automated generation of 3D rooms sig-
nificantly improves the efficiency of the testing process.
Whether for debugging model performance or conduct-
ing large-scale evaluations, the ability to generate various
environments quickly eliminates the time-consuming and
tedious process of manually creating scenes. This allows
for faster iteration and more comprehensive testing with-
out the bottleneck of scene creation.

• Evaluation Robustness: In escape room-style games, the
diversity of room layouts and puzzles directly influences
the game’s difficulty. By automating the scene generation
process, we enable the model to train and be evaluated
in a wide array of environments, which helps enhance its
robustness. This diversity allows the model to develop
better strategies for handling new and unexpected chal-
lenges, improving its ability to generalize across different
scenarios.

• Prevention of Cheating and Overfitting: One of the ma-
jor advantages of generating an infinite variety of scenes
is the prevention of both cheating and overfitting. Fixed
testing environments often lead to overfitting, where a
model can ”learn” to exploit certain patterns or repeti-
tive features of the environment. In contrast, each au-

tomatically generated room is unique, with random ele-
ments that require the model to demonstrate true problem-
solving abilities in previously unseen configurations. This
ensures that the model cannot simply memorize the envi-
ronment but must adapt its strategies to succeed.

• Adaptive Adjustment: Another key feature of our ap-
proach is the ability to dynamically adjust the agent’s
starting position and other environmental variables. This
feature allows us to test how the agent performs under dif-
ferent initial conditions, such as varying the agent’s start-
ing location, the distribution of objects, or the complexity
of the puzzle. These adjustments enable a more compre-
hensive assessment of the agent’s performance, providing
deeper insights into its ability to adapt and solve problems
in diverse situations.

The automated 3D room generation framework we devel-
oped not only enhances the diversity and realism of test-
ing environments but also optimizes the efficiency of large-
scale evaluations. By providing a mechanism for dynami-
cally altering the environment and agent conditions, it of-
fers a more robust and fair evaluation process, ensuring that
models are evaluated under realistic, varied, and challeng-
ing conditions.

C.1.2. Action Space
In our EscapeCraft environment, the agent is allowed to
perform a set of actions that facilitate its interaction with



the environment. These actions include moving forward, ro-
tating right, rotating down, looking at specific coordinates,
grabbing objects, and interacting with elements in the envi-
ronment. Each of these actions plays a distinct role in en-
abling the agent to explore and solve tasks within the escape
scenario.

• Moving Forward: This action specifies the distance the
agent needs to travel along its current heading. The
agent’s movement is controlled by the distance parame-
ter, which dictates how far it should move in a straight
line.

• Rotating Right: This action specifies the angle by which
the agent should rotate to the right. The agent can adjust
its orientation by a specified angular increment, which al-
lows it to navigate through the environment by changing
its field of view.

• Rotating Down: Similar to rotating right, this action al-
lows the agent to lower its head by a specified angle. This
action is crucial for examining objects at different vertical
levels, contributing to a more thorough exploration of the
environment.

• Looking At: The ”looking at” action involves orienting
the agent’s view towards a specific coordinate within its
current field of view. This coordinate is represented in a
relative manner, with the center of the field of view de-
noted as (0.5, 0.5). By specifying the target coordinates,
the agent can focus on particular objects or areas of inter-
est in the environment.

• Grabbing: The grabbing action indicates if the agent
wants to pick up an object or interact with an item within
its proximity. This action is typically used when the agent
identifies an object that can be picked up or manipulated,
allowing it to add that item to its inventory or interact with
it to get crucial information.

• Interacting: The interaction action is multifaceted and de-
pends on the context of the object the agent is engaging
with. Interactions fall into three primary categories:
1. Item Usage: The agent can use items from its inven-

tory by referencing the unique ID of an item, such as a
key, tool, or piece of equipment that it has previously
obtained. In these cases, the agent specifies the item
ID and applies it to relevant objects in the environment
(e.g., using a key to unlock a door).

2. Text Input: Some interactions require the agent to in-
put text, such as a password to unlock a combination
lock. These textual inputs are necessary to progress in
the environment when dealing with specific security
mechanisms.

3. Read: When the agent wants to know the detailed in-
formation of an item in its inventory (e.g., reading the
content recorded in a note), it can use this parameter
and provide the ID of the corresponding item to the
item usage field.

A special case arises when the agent performs the grab
action and leaves the interaction input empty. In this in-
stance, it indicates the agent’s intent to pick up an item
within the field of view, without specifying a particular
item to interact with. This action is used when the agent
is trying to collect objects that are relevant to its escape
mission.
Throughout the agent’s exploration, its interactions with

the environment yield varying types of feedback. The envi-
ronment is populated with different types of objects, classi-
fied as follows:
• Non-Escape Related Props: These are objects within the

environment that do not directly contribute to the agent’s
escape objectives. Interactions with these items provide
no information or progress.

• Collectible Items: These items can be obtained and added
to the agent’s inventory, providing critical information
and/or utility for the agent’s tasks. Upon collection, the
agent gains knowledge of the item’s identity and its asso-
ciated attributes.

• Locked Props: These include objects such as locked
doors, chests, or other secured items. When the agent in-
teracts with a locked object in the early stages, it receives
a prompt indicating the type of item required to unlock
it. Upon obtaining the corresponding item (e.g., a key,
a code, or another unlocking mechanism), the agent can
use the appropriate item from its inventory to unlock the
object by specifying its ID or providing the required in-
put (e.g., entering a password). Once these items are un-
locked, the agent will immediately obtain the props con-
tained in them and be informed of the simple information
of the items obtained.
These interaction dynamics are crucial for the agent’s

progression in the environment, as they form the basis
for decision-making, object management, and problem-
solving. The design of these interactions reflects the need
for both exploration and strategy, with the agent needing to
acquire, manage, and apply various items in order to navi-
gate and ultimately escape the environment.

C.2. Data Construction
C.2.1. Prop Chain
We proposed a procedural generation approach for con-
structing game settings tailored to overcome the inherent
limitations of current language models, such as restricted
context length and reduced reasoning capabilities. To ad-
dress these constraints, we propose the concept of Prop
Chain, a singly linked list that organizes interactive game
elements in a sequence, ensuring a coherent flow of game-
play interactions. Each node in the linked list corresponds
to a distinct interactive item or action, such as a key, a
locked box, or a note with a password. The tail node of
the chain signifies the game’s exit point, thereby serving as



the conclusion of the sequence. Table 7 shows the the Prop
Chain for the Difficulty-3 Level.

In our implementation of the Prop Chain, we initially
focus on a set of fundamental game elements: a key, a
locked box (which can only be opened with a key or pass-
word), a note (carrying both password and story-related in-
formation), and an exit (which is locked and requires either
a key or password to access). These components are used to
construct a series of interconnected nodes, where each item
or action is represented by a node in the chain. The links be-
tween the nodes define the relationships between the props
and the ways in which they can be obtained or used during
the game. For instance, some props may be freely acces-
sible, while others require specific conditions, such as pos-
sessing a key to unlock a box, or using a specific password
to open the door.

The inter-node relationships can be annotated to repre-
sent different interaction modes. For example, a key can be
placed within a box, requiring the player to first unlock the
box before acquiring the key. Additionally, nodes are al-
lowed to contain multiple conditions. A note revealing the
password to the exit are both narrative (to see or infer the
textual password) and functional (to open the door).

Each node has an additional show property set to indi-
cate whether the item should appear directly in the scene
(for example, a key placed in a box only needs to show the
box in the scene, while a key that can be directly obtained
independently needs to be shown in the scene), allowing us
to determine which props need to be generated in the 3D
scene by reading the game settings.

While our initial focus on a limited set of props and inter-
actions, such as the key, locked box, note, and exit, suffices
for creating a variety of escape game settings that challenge
current language models, the system is highly extensible.
The procedural nature of Prop Chain allows for the seam-
less integration of new props, interactions, and unlocking
mechanisms. As such, the framework can easily accommo-
date additional types of interactive items, more intricate un-
lock conditions, and customized gameplay mechanics in fu-
ture iterations. This scalability ensures that the approach re-
mains adaptable to more complex and diverse game scenar-
ios, further enhancing its applicability for testing language
models in a variety of settings.

The Prop Chain framework provides a robust and flexi-
ble methodology for the procedural generation of game set-
tings. By focusing on a set of core interactive elements and
defining their relationships within a linked list structure, we
have developed a scalable approach that can evolve to in-
corporate new game dynamics and meet the increasing de-
mands of future language models.

D. Analysis of Moving Distance
We calculate the optimal distance required for escape tasks
in each scene and compare it with the real distance expe-
rienced by the models. Contrary to our expectations, the
experienced distance does not exhibit a significant correla-
tion to the distance among key props and the exit within the
scene shown in Table 8. This discrepancy may be attributed
to the lack of holistic environmental perception of models,
which prevents them from further reasoning and planning
based on current and ultimate goals, thereby failing to gen-
erate an effective and optimal route to complete the task.

E. Analysis of Grabbing Behaviors
In Figure 4 (b)(c)(d) (please find these figures in the pa-
per, not appendix), we analyzed three performance metrics,
steps, GRS, and Rgrab, during the model task completion
process under Visibility of Exits at initial locations and ori-
entations . The results indicate that, under common trends,
the ability to see the exit from the initial position aids the
model in escaping the room with fewer steps.It aligns with
our intuition, as the exit, crucially related to the ultimate
task goal, plays a significant role in model’s visual recog-
nition, reasoning and interaction with the environment to
collect information. However, there exist exceptions. For
Difficulty-1, some well-performed models still struggle to
achieve high GSR and consume more steps despite being
able to see the exit from their initial location. They do not
interact directly with the exit at the very beginning, and in-
stead choose to rotate around explore the environment for
more information and to conduct reasoning and taking ac-
tion. This is also evident in Difficulty-2 and -3, where these
models, after acquiring the key prop, can locate the exit and
escape more efficiently, as reflected in better performance
in terms of GRS, Rgrab and steps.

We further raise three questions for the analysis of the
reasoning process during escaping:
1. How many steps does it cost to obtain props?
2. How many steps does it costs to exit the room after ob-

taining the core prop (key or password to the door)?
3. What is the relationship between grab success rate

(GSR) and escape outcome for each test?
For question 1, GPT-4o demonstrates a significant advan-
tage in the number of steps required to obtain the key fol-
lowed by Gemini as shown in Table 4 (in the paper). Al-
though Claude requires fewer average steps to find props in
Difficulty-3, this comes at the cost of a significant decrease
in escape rate. The superior performance in locating and
obtaining the core prop can be attributed to model’s better
understanding of task objectives and the environment in the
escape room, as well as its enhanced reasoning abilities in
this context.

For question 2, Gemini is able to locate and acquire the



ID Type Unlock Method Contents Show

box 1 box password (password 1) key 1, note 2 true
key 1 key - false
note 1 paper - password (password 1) true
note 2 paper - some story false
password 1 password - - false

exit exit key(key 1) - -

Table 7. Representation of the Prop Chain for the Difficulty-3 Level. The level includes a sequence of interactive props where only box 1
and note 1 are visible in the room. The gameplay progression follows a structured sequence: the agent first discovers note 1, which
contains the password 1 needed to unlock box 1. Inside box 1, the agent retrieves key 1 and note 2, the latter of which contains a story
element of the game. Finally, the agent uses key 1 to unlock the exit and complete the game.

GPT Gemini Claude LLaMA Qwen

Correlation - 0.06 0.06 0.49 0.63 - 0.48

Table 8. Correlation between optimal distance and model moving
distance.

key at lower cost in difficulty-2. But in difficulty-3 which
is more complex, GPT-4o performs better. It finds the core
prop with fewer steps and its prior memory and understand-
ing of the room environment—gained in the process of ob-
taining key props—aids it to locate the exit and escape using
even fewer steps compared to other models.

For question 3, we observe that escape success is pos-
itively correlated with GSR, as shown in Figure 4 (a) (in
the paper). A higher Grab SR implies that models have
experienced more successful interactions with the environ-
ment. It potentially indicates a clearer understanding of the
overall environment and ultimate goals within the room es-
cape task, leading to a higher success rate. As difficulty
increases, the Grab SR of most models declines, and many
of them fail to escape. However, GPT-4o and Claude 3.5
remain relatively stable, with less variation in grabbing be-
havior and success rate across difficulty settings compared
to others. The low success rate of Qwen, and Llama 3.2
11B in difficulty 2 and 3 can be partly attributed to their in-
ability to effectively perceive the environment, reason and
make appropriate object interaction choices in more com-
plex tasks.

F. Discussion of Fully Autonomous Multi-room
Escape

We discussed a simplified multi-room setting in Table 3 (in
the paper). We further study how models behavior in this
section. The ER of GPT-4o decreases to only 50% on aver-
age for the settings of applying Difficulty-2 to room 2. The
grabbing behaviors also change, where both the Grab SR
and Grab Ratio decreases. Similar trends are observed for

Models
Difficulty-3-note-key

ER
(%)↑

Prop
(%)↑ Steps↓ Grab

SR (%)↑
Grab
Ratio

GPT-4o 72.73 100.00 47.18 33.82 0.42
Gemini-1.5-pro 63.64 86.36 61.27 16.06 0.51
Claude 3.5 Sonnet 36.36 40.91 78.55 10.03 0.27

Models
Difficulty-3-key-note

ER
(%)↑

Prop
(%)↑ Steps↓ Grab

SR (%)↑
Grab
Ratio

GPT-4o 70.00 80.00 53.20 28.90 0.29
Claude 3.5 Sonnet 37.50 68.75 88.14 22.05 0.15
Gemini-1.5-pro 30.00 60.00 87.70 4.79 0.46

Table 9. Detailed results of note-key and key-note settings of
Difficulty-3.

Gemini and Claude. These indicate that models can learn
from a successful escape history. We also note that by set-
ting the two rooms to the same difficulty level further helps
models to escape, while different levels do not benefit as
expected.

G. Discussion of Customizing Difficulties

We enable two different settings of Difficulty-3, a key-note
setting and a note-key setting. We observe that human an-
notators perform equally for both settings (from Table 6),
while some models present preferences regarding the key-
first and the note-first (i.e. the password-first), as shown in
Table 9. Gemini presents an approaching GPT-4o level re-
sults in the note-key setting, while scores the worst in all
calculated metrics among the three reported models, pre-
senting a preference towards searching for the note rather
than recognizing and interacting with the key. Additionally,
Claude scores higher in Grab SR regarding the key-first set-
ting than the note-first setting, potentially indicating a better
attention on the key (directly used to unlock the door) than
on the note (with clues, implicitly assists with the escape
process).



For the multi-room setting, whose results are reported in
Table 3 (in the paper), we further extend the experiments to
a full autonomous scenario to require models to escape both
room in order all by themselves. This means, the first room
no longer serves as a bootstrapping guidance. We notice a
performance drop both in the escape rate and the grabbing
behaviors.

H. Experiments with Reasoning Models
Results of recently released reasoning models, such as
Claude 3.7 and o1, are reported in Table 10. We also
provide results fo GPT-4o and Claude 3.5 for comparison.
Notably, o1 and Claude 3.7 attempt fewer grabs but yield
higher GSR and Prop Gain, indicating more efficient and
intelligent reasoning compared to there previous versions.

Models SR Prop Steps GSR Grab Ratio

GPT-4o 72.73 81.82 36.73 36.73 0.26
o1 72.73 86.36 43.56 39.40 0.22

Claude 3.5 45.45 54.55 57.45 20.64 0.17
Claude 3.7 54.55 59.09 52.78 38.99 0.11

Table 10. Results of reasoning models on Difficulty-2.

I. Results of Post-game Debriefing
We choose models with top-2 escaping rate for evaluation,
that is, GPT-4o and Gemini-1.5-pro. We first leverage the
debriefing prompt, as shown in Table 16, to get recovered
stories from models. Then we use GPT-4o to assess the
recovered stories according to their similarities to our given
groundtruth stories, then assign a score between 0 and 5 to
each recovered story. As shown in Table 11, average scores
of both models are low. We further show a case in Table
12. We can see that models can recall and describe their
escape process relatively well, but they do not remember
clues about the background stories well, which leads to the
failure of restoring the full picture of stories.

Model GPT-4o Gemini-1.5-pro

Average Score 0.33 0.44

Table 11. Average scores of models on post-game debriefing task.
Scores are between 0 and 5.

J. Required Abilities
In our MM-Escape Benchmark, the free-form task chal-
lenges models with the following abilities:
• Visual search. The model should have a prior knowledge

on the potential locations of useful clues and objects, rea-

Groundtruth
The story revolves around a secret society that hides within
the walls of an ancient mansion. Once you enter, you must
follow cryptic clues and navigate through a maze of rituals
and secret rooms. The society’s true purpose is far darker
than its intellectual allure, and the deeper you go, the harder
it is to escape. The goal is to uncover the society’s myster-
ies and find a way out before becoming part of its twisted
legacy.

Recovered Story from GPT-4o
The room appeared to be a deliberately designed escape
challenge, possibly created for entertainment or as a test of
problem-solving skills. The presence of the locked box and
the notes suggested a sequence of puzzles that needed to be
solved to escape.
The sequence of events began with the discovery of Note 1,
which provided the numerical code ”9926.” This code was
used to unlock the box on the table, revealing Key 1 and
Note 2. The key was then used to unlock the door, allowing
for the escape from the room.
The story on Note 2, while not explicitly detailed, might
have provided a narrative or thematic context for the escape
challenge, perhaps hinting at the creator’s intentions or the
purpose of the room. The overall experience was one of ex-
ploration, deduction, and the satisfaction of solving a series
of interconnected puzzles to achieve freedom.

Recovered Story from Gemini-1.5-pro
The room was clearly designed as an escape room chal-
lenge. The purpose was to test my problem-solving skills
and ability to find and interpret clues. The creator of the
challenge remains unknown, but the sterile and impersonal
nature of the room suggests a deliberate design choice. The
sequence of events was as follows: I started in the center
of the room, explored the cabinet near the door, and then
the sofa and stool. I then found the note with the num-
ber ”1148”. Realizing the box on the side table was likely
password-protected, I used the number from the note to un-
lock it. Inside, I found the key (key 1) and a second note
(note 2). I then used the key to unlock the door and escape
the room. The story on note 2 likely served as a distraction
or perhaps a thematic element to the escape room’s design,
but ultimately, the key to escaping was the numerical code
”1148”.

Table 12. A case of post-game debriefing.

son about its current field of view and make decisions to
explore the environment efficiently.

• Active perception. Due to the limited field of view, the
model cannot acquire all relevant information at once. It
must actively adjust the perspective by moving and rotat-
ing its viewpoint, allowing is to perceive from different
angles and effectively identify key objects, such as the
key, the password and the door.



• Spatial reasoning. The model is required to deduce spa-
tial depth and objects in the room. It must infer hidden or
obscured elements, estimate distances, and determine the
most appropriate actions based on the spatial configura-
tion of its surroundings it observed. The model should
leverage its understanding of space to make decisions
about movement, interaction, and problem-solving, pro-
gressively advancing toward the escape objective.

• Target deduction. The model is only given the objective
to escape the room, without explicit instructions on how
to achieve it. Hence, it should autonomously infer nec-
essary actions through interaction and exploration, or de-
compose the ultimate objective into feasible and short-
term goals.

• Prop Utilization Capability. In the escape room environ-
ment, the model must maintain awareness of the items
in its inventory and determine the appropriate moments
to use them. Effective utilization of these props is cru-
cial for navigating the complex environment and achiev-
ing the escape objective.

• Long-term reasoning. Successfully escaping the room re-
quires a prolonged sequence of interactions. The model
must analyze and integrate long-form text-image data
across multiple key interaction steps to make informed
decisions.

K. Prompt Template
System Prompt The System Prompt consists of two pri-
mary components: the Instruction Prompt and the Op-
eration Prompt. The Instruction Prompt provides the
model with contextual information regarding the current en-
vironment, its overarching objective, and the approach re-
quired to achieve this objective. In contrast, the Operation
Prompt delineates, in precise detail, the permissible actions
and exploratory methods that the model can employ within
the environment. Additionally, it specifies the format and
structure of the structured data that the model is expected
to generate in response. The complete prompt is shown in
table 13.

Step Prompt The Step Prompt is designed to provide
feedback to the model regarding the outcome of its previ-
ous interaction with the environment (if an interaction was
attempted). Simultaneously, it informs the model in real-
time about the items currently available in its inventory for
potential use. Additionally, the prompt serves as a directive,
encouraging the model to continue exploration or engage in
further interactions.The complete prompt is shown in table
14.

Prompt for Consistency Evaluation The Consistency
Evaluation Prompt is designed to assess whether the mul-

timodal agent’s reasoning aligns with the actual outcomes
of its actions during an escape room interaction. After each
interaction, the model is given the agent’s internal ratio-
nale, describing its belief or intended action, and the envi-
ronment’s response, which records what actually occurred.
The prompt guides the model to judge if the target object
mentioned in the rationale matches the object that was truly
interacted with, thereby evaluating whether the behavior is
intentional or accidental. A special case is defined for suc-
cessful escapes: the rationale must explicitly or implicitly
indicate the agent’s goal to exit the room. The model out-
puts a binary judgment in JSON format, indicating consis-
tency (‘1’) or inconsistency (‘0’). The complete prompt is
shown in table 15.

Debriefing Prompt The Story Recovery Prompt is used
to guide the model to recall and infer the background and
story of the entire game based on the interaction records af-
ter the model successfully escapes the room. The model is
guided to describe the room environment, recall the items
that may contain information or clues, and finally piece to-
gether the whole story to complete the story recovery. The
complete prompt is shown in table 16.



Instruction Prompt
You find yourself locked inside a room, and your ultimate goal is to escape the room. i.e. the room escape game.

You can explore the room, interact with objects, inspect items, and resolve puzzles. If you find doors locked or uninteractable,
you probably need to search for keys or passwords to unlock the door when interacting with the environment. You can adopt
the following actions to explore the room and interact with objects:

Operation Prompt
- move forward: float, ranged between [-10, 10]. This is the number of meters you want to move forward (negative value
means moving backward).
- rotate right: float, ranged between [-180, 180]. This is the number of degrees you want to turn right (negative value means
turn left).
- rotate down: float, ranged between [-90, 90]. This is the angle you want to adjust your view vertically. Positive value means
looking downward, while a negative value means looking upward. Angle 0 means looking straight ahead.
- jump: bool, whether you want to jump (can be used together with moving forward), e.g., True represents the action ”to
jump”.
- look at: list[x: foat, y: float], the range of x and y is [0, 1]. This parameter is the coordinates of the point in the image you
want to look at. For reference, the coordinates of the upper left corner of the scene are (0, 0) and the coordinates of the lower
right corner are (1, 1). Also to mention that there are on clues on the ceiling.
- grab: bool, whether you require to interact with the object located exactly at the center of the scene (marked by a red dot).
e.g., to grab the key or to interact with (or open) a box at the center of the scene, set grab=True. The red dot assists in locating
the object you require to interact with. You might need to adjust the view or move closer to ensure the red dot is on your
target object, through the rotate right, rotate down, and move forward actions. To successfully grab an object, you should
center the object via the red dot and be in a certain distance to it. If the grabbing fails, try move closer towards the object.
If it fails multiple times at the same position, you should be aware that not all objects are interactable, do not get stucked in
uninteractable position.
- interactions : dict:{”use item id”: str, this is the item id you require to view or use (when used together with grab=True, it
means to use this item to interact with the target object you want to grab, e.g. using item id of the key to open the door in the
scene), ”input”: str, this is the message you want to input when interacting with the center object}.
- read: str, this is the item id that you want to get detailed information from your bag.
- rationale: str, represents the rationale of your action. This should explain your decision-making process and help the agent
understand your thinking process.

You need to return data in the following format of JSON string to interact with the scene:
{

‘‘move forward’’: float,
‘‘rotate right’’: float,
‘‘rotate down’’: float,
‘‘jump’’: bool,
‘‘look at’’: [x: float, y: float],
‘‘grab’’: bool,
‘‘interactions’’: {

‘‘use item id’’: str,
‘‘input’’: str

},
‘‘read’’: str,
‘‘rationale’’: str

}

All of the above operations are optional. If no value is passed in, the interactive operation will not be performed.

You must follow the above instructions and don’t say anything else except for the JSON string of operations.

Table 13. The System Prompt



Interaction Result
{interaction result}
===

Inventory
The items in your bag usable include:
{bag desc}
===

Step Prompt
Please determine the next action(s) that could help you observe the room or obtain useful tools or clues.
If you find yourself stuck in a corner, try turn around by passing rotate right.
You need to return data in the following format of JSON string to interact with the scene and don’t say anything else:
{

‘‘move forward’’: float,
‘‘rotate right’’: float,
‘‘rotate down’’: float,
‘‘jump’’: bool,
‘‘look at’’: [x: float, y: float],
‘‘grab’’: bool,
‘‘interactions’’: {

‘‘use item id’’: str,
‘‘input’’: str

},
‘‘read’’: str,
‘‘rationale’’: str

}

Table 14. The Step Prompt



Consistency Evaluation Prompt
You are a reasoning consistency evaluator for a multimodal agent benchmark. Your task is to determine whether the agent’s
intention (described in the ”rationale”) matches the actual interaction result (described in the ”response”).

Specifically, you are given:
- The agent’s rationale for why it attempted an interaction, describing its goal or belief about the current environment.
- The response from the environment after the interaction, which includes the actual result (e.g., what item was interacted
with and what was obtained).

Your goal is to determine whether the object the agent intended to interact with matches the object that was actually interacted
with according to the response.

If the agent tried to interact with object A (e.g., a microwave), but the response shows interaction with object B (e.g., a
box), and B was not the intended target, this is considered an inconsistent interaction (i.e., accidental success or misaligned
action).

Special Case: If the response is “Escaped successfully!”, you should check whether the agent’s rationale explicitly or
implicitly indicates the intention to escape (e.g., trying to open the door to leave). If not, treat it as inconsistent.

You must give your feedback in the following JSON-string format and DON’T say anything else:
{

‘‘Consistency’’: 1 | 0
}

Where:
- 1 means the rationale and interaction are consistent (i.e., aligned).
- 0 means the interaction appears to be accidental, mismatched, or unintended.

Respond only with Consistency: 1 or Consistency: 0.

—

Example 1:
rationale: Moving closer to the microwave to try interacting with it one last time using ’1264’. If this doesn’t work, I’ll need
to explore other areas.
response: You used the correct password to unlock the box... You did not interact with any objects in the last step.
Expected output: Consistency: 0

Example 2:
rationale: I’ll try using the key I just picked up on the door. Let’s see if I can escape now.
response: Escaped successfully!
Expected output: Consistency: 1

Example 3:
rationale: I want to check if the small box has any useful items inside.
response: You opened the box and found a screwdriver.
Expected output: Consistency: 1

Please score the following interaction:
rationale: {rationale}
response(s): {response}

Table 15. The Consistency Evaluation Prompt



Story Recovery
You have successfully escaped the room. Now, reconstruct the entire story based on the items you discovered during the
game and the overall environment you observed. Follow the steps below to guide your recollection and piece together the
full narrative.

Describe the room environment
Step 1: Describe the room environment ”Begin by describing the room where you started. What did the room look like?
What was the overall atmosphere? Were there any notable features, such as furniture, lighting, or strange objects? Include
sensory details like smells, sounds, and the arrangement of the room. This will help set the scene for the story.”

Recall the items that may contain
Step 2: Recall the items that may contain information or clues ”Think back to the objects you found throughout the game.
What items did you come across? Were any of them unusual or seemed important? These could include physical items like
keys, notes, or devices, or even abstract clues like symbols or markings on the wall. Reflect on how each item might have
connected to the next step in your escape.”

Piece together the whole story
Step 3: Piece together the whole story ”Now, use the information from the room description and the items you’ve found to
piece together the full story. What was the purpose of the room? Who or what might have created the escape challenge, and
why? What was the sequence of events that led you to the escape? Try to connect the dots between the environment, the
clues, and the items you encountered, and reconstruct the narrative from start to finish.”

Table 16. The Story Recovery Prompt


