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Supplementary Material

This supplementary material provides additional details of
TCA, including method descriptions, theoretical analysis,
empirical results, and the algorithm. We also discuss
TCA’s applicability and limitations. To further illustrate the
method, we include visual aids for token condensation.

• Sec. 5.1: Interpretation of Fig. 2
• Sec. 5.2: Details of the Coreset Selection Strategy
• Sec. 5.3: Theoretical Analysis
• Sec. 5.4: Additional Experiments and Ablation Study
• Sec. 5.5: Token Condensation Algorithm
• Sec. 5.6: Quantitative Study (R = 0.7).
• Sec. 5.7: Discussion on TCA’s Generalizability
• Sec. 5.8: Potential Limitation of TCA

5.1. Interpretation of Fig. 2

In Fig. 2a, we sort the image tokens by their attention to
the <cls> token and group them into bins. We then se-
quentially prune each group and measure the change in
CLIP’s visual-text alignment. The y-axis shows the align-
ment degradation when a specific token group is removed.
A larger drop means the pruned tokens were important for
alignment, while a negative drop suggests a slight improve-
ment. It shows that removing attentive tokens (x-axis left)
harms alignment, whereas pruning low-attentive tokens has
little or even a positive impact. This validates our motiva-
tion that token attentiveness is strongly correlated with their
semantic importance. In Fig. 2b, the y-axis is the average
cosine similarity between the stored anchor tokens (i.e., the
<cls> tokens of low-entropy samples) and the correspond-
ing ground-truth text embeddings. As the reservoir is pro-
gressively updated with lower-entropy samples, the average
alignment between anchor tokens and text embeddings im-
proves, validating the domain- and class-representativeness
of saved domain anchors.

5.2. Details of Coreset Selection

In domain-aware token merging, we first identify the most
representative tokens V̂l

merge ∈ RK×Dv from Vl
Φ and as-

signs the remaining ambiguous tokens to these selected to-
kens. This strategy is equivalent to solving the K-Center
problem [55, 72]. The objective is to select K center tokens
such that the maximum distance between any token and its
nearest center is minimized. The greedy search for coreset
optimization is defined as follows:

C∗ = argminC⊆Vl
Φ,|C|=K max

vl
i∈Vl

Φ

min
vl
c∈C

d(vl
i,v

l
c), (10)

where C∗ ∈ RK×Dv represents the set of selected center
tokens, K is the number of centers, and d(·, ·) is the dis-
tance metric between token vl

i and center token vl
c. Once

the center tokens C∗ are selected, the remaining tokens are
assigned to their nearest centers, and the ambiguous tokens
are merged as:

V̂l
merged =

1

|N (k)|
∑

vl
i∈N (k)

vl
i, (11)

where N (k) represents the set of tokens assigned to center
k. The value of K is kept small, with K ≪ N , allowing
our merging algorithm to operate with linear complexity.

5.3. Theoretical Analysis

The theoretical foundations of CLIP’s generalization re-
main underexplored, with ongoing debates on whether it
arises from train-test similarity [43], spurious feature re-
liance [65], or other factors. While we did not include rig-
orous proof, we connect our TCA to PAC-Bayesian gener-
alization theory. We model token selection as a stochastic
hypothesis, where the posterior Q over retained tokens fol-
lows a Gibbs formulation, favoring subsets that minimize
cosine similarity variance with texts:

Q(V̂) =
1

Z
exp (−λVar (cos(V, tc))) ,

Eood[− cos(V̂, tc)] ≤Eid[− cos(V, tc)] +

√
1

2
(DKL(Q∥P) + log

m

δ
.

This supports the PAC-Bayes bound, where TCA improves
generalization by reducing KL divergence between test-
time token selection and CLIP’s inaccessible pretraining
distribution, which we approximate using DTR. Empirical
results in Fig. 2b confirm this, showing that retained tokens
act as stable anchors for text alignment.

5.4. Additional Results

Impact of Visual Backbone. Trends similar to ViT-
B/16 are observed with the ViT-L/14 architecture, as shown
in Tab. 6. TCA consistently surpasses TDA across mul-
tiple datasets, including Aircraft, Caltech101, EuroSAT,
Flower102, Pets, and UCF101, while adhering to a limited
GFLOPs budget (19.6% GFLOPs reduction). Even with a
48.9% reduction in GFLOPs, TCA continues delivering sat-
isfactory results. This demonstrates the scalability and ro-
bustness of our method across different model sizes, rein-
forcing its effectiveness without additional training.



Table 6. Results on the cross-dataset benchmark with CLIP ViT-L/14. ∗ denotes the averaged GFLOPs across all datasets.

Method Aircraft Caltech101 Cars DTD EuroSAT Flower102 Food101 Pets SUN397 UCF101 Average GFLOPs

CLIP 31.59 94.56 78.12 57.03 63.00 79.58 90.92 93.46 69.05 76.13 73.34 81.14
Tent 27.45 94.97 76.93 57.15 66.20 74.83 89.20 93.27 68.73 75.73 72.45 81.14
SAR 26.07 94.52 75.58 56.91 63.77 75.03 89.13 93.05 68.39 75.50 71.80 81.14
TPT 30.06 95.21 76.84 52.30 55.11 76.21 88.56 93.08 67.69 73.78 70.88 143.31
TDA 33.42 95.46 78.72 57.39 66.27 79.94 90.83 93.27 70.74 78.14 74.42 81.14

EViTR=0.9 31.23 94.56 76.59 56.38 63.04 79.13 90.08 93.32 68.54 76.40 72.93 65.19
ToMER=0.9 28.29 92.54 71.26 56.68 60.30 77.87 89.77 91.28 68.21 72.22 70.84 64.74
ATSR=0.9 25.74 93.39 67.69 55.02 52.81 76.78 86.48 91.50 66.26 72.56 68.82 43.62∗

EViTR=0.7 26.94 92.94 62.55 53.96 52.04 73.24 80.69 90.00 63.70 71.21 66.73 40.78
ToMER=0.7 15.60 83.73 38.43 49.82 44.51 59.36 72.65 77.73 58.32 50.99 55.11 40.05
ATSR=0.7 6.87 67.87 16.37 40.78 30.12 37.43 34.50 60.94 30.07 33.44 35.84 26.76∗

TCAR=0.9 33.84 96.39 76.93 56.38 67.74 80.71 90.21 93.54 70.02 78.24 74.40 65.24−19.6%

TCAR=0.7 29.73 94.81 63.72 53.72 60.69 76.00 81.55 90.02 65.61 73.14 68.90 41.44−48.9%

Table 7. Impact of scale factor β.

β 0.01 0.05 1 3 5

Pets 89.51 89.53 89.37 89.42 89.26
Flower102 73.33 73.08 70.93 70.56 70.44
EuroSAT 63.64 64.06 69.86 70.26 70.43

Impact of Logits Correction Temperature β. Tab. 7 ex-
amines how different logits correction temperatures β affect
the adaptation results. The intuition is that with a smaller
β value, the logits correction will emphasize the tokens in
shallower layers (Eq. (9)), while a larger β value will shift
the focus to deeper layers. We observe that a smaller value
of β is preferred for the Pets dataset as it contains animals
as objects, requiring more high-level contextual information
for accurate predictions [49]. In contrast, for EuroSAT, the
best predictions are obtained with larger β values, suggest-
ing that low-level, local information is crucial. This aligns
well with the nature of the dataset, where different types
of land can be distinguished by features such as colors and
edges. Nevertheless, our method consistently provides sig-
nificant improvements across all β values, with accuracy
gains of up to 20%, highlighting the effectiveness of logits
correction using the domain anchor tokens.

Table 8. Impact of correction weight λ.

λ 2 3 4 5 6 7 8

Pets 89.53 89.32 89.13 88.96 88.96 88.66 88.44
Flower102 72.43 72.76 73.20 73.16 73.16 73.33 73.16
EuroSAT 60.15 65.74 68.80 69.51 69.84 70.16 70.43

Impact of Correction Weight λ. To investigate how differ-
ent correction weights λ affect performance, as described in
Eq. (9), we conducted experiments across a wide range of
λ values, from 2 to 8, as shown in Tab. 8. We observe that
Pets exhibits stable results across different λ values, indicat-

ing that less aggressive correction is sufficient. In contrast,
datasets such as Flower102 and EuroSAT which initially
do not perform well on CLIP, benefit from stronger correc-
tions, achieving their best performance with larger correc-
tion weights of 7 and 8, respectively. This highlights the
effectiveness of our logits correction module.

Table 9. Impact of token merging/pruning ratio.

Merging:Pruning 0:1 1:2 2:1

Pets 89.04 88.99 89.53
EuroSAT 69.63 69.98 70.43

Impact of Pruning & Merging Ratio. We experiment
with different token pruning and merging ratios under the
same computational budget, as shown in Tab. 9. Incorporat-
ing token diversity through merging consistently enhances
performance. Specifically, the 2:1 merging-to-pruning ra-
tio outperforms other configurations, especially those favor-
ing pruning. This is because merging preserves diverse to-
ken representations by K coresets that pure pruning might
discard. When comparing pruning-only (0:1) with the 1:2
merging-pruning ratio on Pets, pruning-only performs bet-
ter. This may be because the dataset features images with a
single prominent object, meaning that pruning background
tokens has minimal impact since essential object informa-
tion remains intact. In contrast, for the EuroSAT dataset,
which comprises diverse satellite imagery, simply pruning
tokens leads to the loss of important contextual features nec-
essary for accurate classification.
Impact of Merging Center Number K. We evaluate TCA
performance by giving different numbers of merging cen-
ters K for Pets, EuroSAT, and Food101 datasets. As shown
in Tab. 10, setting K = 2 consistently yields the best re-
sults. This choice balances preserving important informa-
tion and reducing redundancy. A smaller K (i.e., K = 1)
may oversimplify the merging process, leading to the loss of



Table 10. Impact of the merging center number K.

K 1 2 3 4

Pets 89.29 89.53 89.29 89.21
EuroSAT 66.25 70.43 66.96 67.44
Food101 85.15 85.31 85.31 85.38

critical details, especially in diverse datasets like EuroSAT.
Conversely, increasing K beyond 2 introduces unnecessary
complexity and can over-segment the token space, retain-
ing redundant tokens that contribute little to classification.
Therefore, maintaining a very small K (where K ≪ N ) is
sufficient and advantageous.
Impact of Benchmark Datasets. We conducted exper-
iments on the OOD benchmark which focuses on evalu-
ating the model’s effectiveness on shifted data using la-
bel sets previously seen by CLIP. This includes variants
of ImageNet [14]: ImageNet-A [24], ImageNet-V2 [51],
ImageNet-R [25], and ImageNet-S [62]. A consistent obser-
vation can be seen in the out-of-distribution (OOD) bench-
mark, where TCA demonstrates significant improvements
over the CLIP baseline under a constrained GFLOPs bud-
get of R = 0.95, as shown in Tab. 11. TCA outperforms
traditional test-time adaptation methods while maintaining
efficiency. TCA also achieves superior results on ImageNet-
R and ImageNet-S, outperforming TPT without augmenta-
tion. Additionally, when compared to other training-based
approaches, even those with unlimited computational bud-
gets, TCA delivers comparable performance. However, we
observe that TCA does not perform as strongly on the OOD
benchmark as it does on the CD benchmark even with a
higher rate R. This may be due to the conceptual shifts in
OOD datasets, as shown in Sec. 5.8, which could present a
challenge for training-free adaptation methods.

5.5. Algorithm
Algorithm 1 outlines the process for performing token
pruning and merging at layer l in a ViT-based CLIP model.
We first obtain the averaged domain anchor tokens Al−1

c∗

by the <cls> tokens saved in the reservoir R. Token con-
densation is then conducted given the domain anchor token.
Specifically, we conduct token pruning by relative ranking
positions of token i across multiple attention heads. Then,
coreset selection is used for token merging. Finally, we con-
catenate the <cls> token vl

cls with the retained tokens as
the input for the next layer, where the original N +1 tokens
are shrunk to (R · N) + 1, thereby reducing the computa-
tional cost.

5.6. Quantitative Study
We visualize the token condensation masks at layer 3, layer
6, and layer 9, and compare them with the original image

Algorithm 1 Token Condensation at the l-Layer in Ev

Require:
1: Token reservoir R;
2: Visual patches Vl−1 at layer l − 1;
3: Pruning threshold θprune(α ·R);
4: Merging threshold θmerge(R)

Ensure: Token-efficient visual feature V̂l

5: Domain Anchor Token Selection: Obtain Al−1
c∗ , using

domain anchor tokens in R and sample’s <cls> token
vl

cls
6: Compute cross-head scores Shead

i for every token i
7: if ∀i, Shead

i ≤ θprune(α ·R) then
8: Token Pruning: Obtain V̂l

prune via Eq. (7)
9: end if

10: if ∀i, θmerge(R) ≤ Shead
i ≤ θprune(α ·R) then

11: Token Merging: Obtain V̂l
merged via Eq. (11)

12: end if
13: return V̂l, which is composed of vl

cls, V̂
l
prune (exclud-

ing merged tokens), and V̂l
merged

across multiple datasets, as shown in Fig. 8. As the lay-
ers go deeper, we observe that class-irrelevant patches are
gradually pruned, as indicated by the black mask. TCA
also merges class-ambiguous patches, such as fur in cat im-
ages, and ground and sky in aircraft and car images. All
similar tokens are merged into a single token using our pro-
posed coreset selection strategy. After token condensation,
the sample features retain only discriminative information,
thereby bridging the gap between visual and text features,
and mitigating the distribution shift between pretrained data
and unseen datasets.

5.7. Discussion on TCA’s Generalizability

TCA is designed for VLMs such as CLIP, SigLIP, and
SigLIP v2, requiring only minor modifications. These mod-
els share a key characteristic: they compute cosine similar-
ity between modalities for zero-shot image classification.
For CLIP, we use the <cls> token as a guiding indicator
throughout the method. In contrast, for the SigLIP series,
we take the average over attention weights since their archi-
tecture does not include a visual <cls> token. The way
we determine the domain anchor token and perform token
condensation is inherently tied to how each VLM extracts
visual features for alignment. We acknowledge that TCA
may not directly apply to models like LLaVA [36], as they
are not designed for cross-modal alignment but rather for
text generation, dictated by their architectural constraints.
While this limits direct applicability, it does not diminish
TCA’s effectiveness in its intended scope. Adapting it to
such models would likely require a fundamental architec-
tural redesign.



Table 11. Results on the out-of-distribution benchmark with CLIP ViT-B/16. ∗ denotes the averaged GFLOPs across all datasets.

Method Aug-free ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S Average OOD Average GFLOPs

CLIP ✓ 68.34 49.89 61.88 77.65 48.24 61.20 59.42 17.59

Tent ✓ 65.49 44.57 59.26 78.72 22.52 54.11 51.27 17.59
SAR ✓ 58.52 33.71 53.95 76.08 39.24 52.30 50.75 17.59
TPT ✗ 68.98 54.77 63.45 77.06 47.94 62.44 60.81 1108.61
Diff-TPT ✗ 70.30 55.68 65.10 75.00 46.80 62.28 60.52 -
C-TPT ✗ 69.30 52.90 63.40 78.00 48.50 62.42 60.70 1108.61
MTA ✗ 70.08 58.06 64.24 78.33 49.61 64.06 62.56 -
TDA ✓ 69.26 50.82 62.23 77.93 50.26 62.10 60.31 17.59

EViTR=0.95 ✓ 68.32 49.46 61.73 77.00 47.76 60.85 58.99 16.31
ToMER=0.95 ✓ 67.57 48.81 60.88 75.78 47.05 60.02 58.13 16.21
ATSR=0.95 ✓ 65.83 49.80 59.47 71.09 43.38 57.91 55.94 11.50∗

TCAR=0.95 ✓ 68.88 50.13 62.10 77.11 48.95 61.43 59.57 16.55
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Figure 7. Sample data from the OOD benchmark. The samples from the same class exhibit significant diversity. For instance, in the
ImageNet-R dataset, one image of a great white shark is dominated by shoes and human legs, while another is on top of a building, showing
extreme variability.

5.8. Discussion on the Limitation of TCA
In this section, we discuss the potential limitations of our
proposed TCA. Due to the training-free nature of the ap-
proach, it is challenging to mitigate the performance gap
when the testing domain diverges significantly from the
training domain. As observed in the out-of-distribution
(OOD) samples shown in Fig. 7, the ground truth object is
not always centrally located, and larger class-irrelevant ob-
jects (e.g., humans or shoes) can sometimes dominate the
prediction. This issue is particularly prominent in CLIP
models, where text features for all classes are predefined.
When the dominant object is included in the label set, accu-
rately directing visual features to the correct class without
additional training becomes difficult. Moreover, the diver-
sity of OOD samples introduces further complexity, espe-
cially in the absence of data augmentation. These observa-
tions raise important questions for future research: (1) How
can we quantify the capacity to mitigate domain shift effec-
tively? (2) What lightweight solutions can be developed for
backpropagation and network updates to facilitate test-time
adaptation? We leave these questions for future work.
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Figure 8. Visualization of our proposed token condensation with R = 0.7. Pruned tokens are masked in black, while different colors
represent distinct merging clusters.
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