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Supplementary Materials

1. More Results

More Ablation Experiments about AMSE. We present the ablation experiments for different ¢ and « in Figure 1. As
illustrated: 1) For ¢ = 1, the asymmetric condition always holds. In this case, a is a constant with zero gradient, making
different choices of a equivalent. The loss is difficult to optimize, similar to MAE. 2) For ¢ = 2, the asymmetric condition
holds when @ > 9. For the gradient, we have W —2(a— f(x),). and a does not affect %ﬁ;’y). As a increases,
the weight of high-confidence (clean) samples in the gradient increases, while the weight of low-conﬁdenée (noisy) samples
decreases. This explains why a larger a leads to better robustness. 3) For ¢ = 3, the condition holds when a > 4.73. The
performance of the loss is similar to ¢ = 2, but it is more sensitive to the hyperparameter, as higher powers amplify the loss

error. Therefore, using ¢ = 2 is an appropriate choice.
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Figure 1. Ablation experiments for AMSE on CIFAR-10 with 0.8 symmetric noise.

More Results for AGCE+MAE. For the experiment for AGCE+MAE, we use the same a = 6,¢ = 1.5 in [10], and search
for a, 8 € [1,10]. The complete results are presented in Table 1, while the results for « = 1,8 = 1 are shown in the main

paper.

Table 1. Last epoch test accuracies (%) of different methods on CIFAR-10 with symmetric (1 € [0.4, 0.8]) and asymmetric () € [0.2,0.4])
label noise. The results “mean=std” are reported over 3 random trials and the best results are in bold. T RCE actually equals a scaled MAE
[5]. In order to be consistent with the original APL paper [4], we still write RCE here.

Symmetric Asymmetric
CIFAR-10 0.4 0.8 0.2 0.4
MAE 82.031365 44454649 | 77.20+44s 57.86+123
NCE 69.37+1022  41.20x125 | 72.20x038  65.33 2040
AGCE 83.39+017  44.42+4074 | 86.67+01s  60.91 1020

AGCE+MAE (a=1,8=1) 85.25+012  44.61+s72 | 78284461 57.80125
AGCE+MAE (o = 1,8 =10) | 85.86x0u1 39.4410m | 77.64355  56.50+04
AGCE+MAE (a = 10,8 =1) | 85.71x0» 23364285 | 75.431416 57.55418
AGCE+MAE (o = 10,8 = 10) | 85.85+0ss 21.831147 | 78.924459  56.491050

I\ICE+RCE]L 85.891031 54.991213 | 88.621029 77.94102




2. Experiments

2.1. Evaluation on Benchmark Datasets

Noise Generation. We follow the approach of the previous work [8] to experiment with two types of synthetic label noise:
symmetric noise and asymmetric noise. In the case of symmetric label noise, we intentionally corrupt the training labels by
randomly flipping labels within each class to incorrect labels in other classes. As for asymmetric label noise, we flip the labels
within a specific sets of classes: For CIFAR-10, the flips occur from TRUCK — AUTOMOBILE, BIRD — AIRPLANE,
DEER — HORSE, and CAT <« DOG. For CIFAR-100, the 100 classes are grouped into 20 super-classes, each containing
5 sub-classes, and we flip the labels within the same super-class into the next. For instance-dependent noise, we follow the
approach in PDN [6] for generating label noise.

Experimental Setting. We follow the experimental settings in [4, 8, 10]: An 8-layer CNN is used for CIFAR-10 and a
ResNet-34 [1, 3] for CIFAR-100. The networks are trained for 120 and 200 epochs for CIFAR-10 and CIFAR-100 with
batch size 128. We use the SGD optimizer with momentum 0.9 and L1 weight decay 5 x 107 and 5 x 10~° for CIFAR-10
and CIFAR-100. The learning rate is set to 0.01 for CIFAR-10 and 0.1 for CIFAR-100 with cosine annealing. Typical data
augmentations including random shift and horizontal flip are applied.

Parameters Setting. For baselines, we use the same parameter settings in [4, 8, 10], which match their best parameters. The
detailed parameters for JAL and baselines can be found in Table 2. For LT-APL [9], we take results directly from the original
paper. For our method, we follow a principled strategy for parameter tuning: the range of a can be initially estimated through
theoretical guidance, and then selected from [5, 10, 20, 30] based on experimental results.

Table 2. Parameter settings for different methods.

Parameter ‘ CIFAR-10 CIFAR-100 WebVision ClothinglM
CE - - - -
FL () 0.5) (0.5) - -
GCE (¢) 0.9 (0.7) (0.7) (0.6)
SCE (o, 8, A) 0.1, 1, -4) 6, 1,-4) 10, 1, -4) 10, 1, -4)
NCE - - - -
NCE+RCE («, 8, A) (1,1,-4) (10, 0.1, -4) (50, 0.1, -4) (10, 1, -4)

NCE+AUL (a, B,a,p) | (1,3,63,1.5) (10,0.015,6,3) - -
NCE+AGCE (o, 8,a,9) | (10,4,6,1.5) (10,0.1,1.8,3) (50,0.1,2.5,3) (50,0.1,2.5,3)

ANL-CE (a, ) 5, 5) (10, 1) 20, 1) (5,0.1)
ANL-FL (a, 3, 7) (5,5,0.5) (10, 1, 0.5) (20, 1, 0.5) (5,0.1,0.5)
JAL-CE (a, B, a) (1, 1, 30) (5, 1,20) (50, 1, 30) (5,0.1,5)

JAL-FL (¢, 8, a,7) 1, 1, 30, 0.5) (5, 1,20, 0.5) (50,1,30,0.5) (5,0.1,5,0.5)

2.2. Evaluation on Real-World Datasets

Experiment Setting for WebVision / ILSVRC12. For WebVision, we use the mini setting [2], which includes the first 50
classes of the google image subset. We train a ResNet-50 using SGD for 250 epochs with initial learning rate 0.4, nesterov
momentum 0.9 and weight decay 3 x 10~° and batch size 256. The learning rate is multiplied by 0.97 after each epoch of
training. All the images are resized to 224 x 224. Typical data augmentations including random shift, color jittering, and
horizontal flip are applied. We train the model on Webvision and evaluate the trained model on the same 50 concepts on the
corresponding WebVision and ILSVRC12 validation sets.

Experiment Setting for ClothinglM. For ClothinglM, we use ResNet-50 pre-trained on ImageNet similar to [7]. All
the images are resized to 224 x 224. We use SGD with a momentum of 0.9, a weight decay of 1 x 1072, and batch size
of 256. We train the network for 10 epochs with a learning rate of 5 x 10~ and a decay of 0.1 at 5 epochs. Typical data
augmentations including random shift and horizontal flip are applied.
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