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In this manuscript, we provide additional details that
could not be included in the main paper due to space con-
straints, including: (A) the derivation of Eq. (9) in the main
paper; (B) further implementation details and ablation anal-
ysis of the lane prior refinement encoder-decoder structure;
and (C) detailed descriptions of both the segment-level and
fine-grained point-level metrics.

A. Derivation of Eq. (9)
According to Bayes’s theorem, we have

q(xt−1|xt,x0,xc) ∝ q(xt|xt−1,xc)q(xt−1|x0,xc), (1)

where

q(xt|xt−1,xc) = N (xt;xt−1 + γtxres, κ
2γtI), (2)

q(xt−1|x0,xc) = N (xt−1;x0 + ηt−1xres, κ
2ηt−1I). (3)

Now, considering the quadratic form in the exponent of
q(xt−1|xt,x0,xc), we have
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λ2 = κ2 ηt−1

ηt
γt, (6)

and ”const” denotes terms that are independent of xt−1.
This quadratic form results in the Gaussian distribution in
Eq. (9) of the main paper.

B. Implementation of Lane Prior Refinement
and More Ablation Analysis

For the lane prior refinement mechanism in the Lane Prior
Diffusion Module (LPDM), we employ an encoder-decoder
architecture. Our ablation experiments in the main pa-
per indicate that feature concatenation and feature addi-
tion yield similar performance. Therefore, here we use
the concatenation-based approach as an example. In this
paradigm, the generated BEV feature g and the origi-
nal feature xc are concatenated and then processed se-
quentially by an encoder built from stacked convolutional
blocks and a decoder composed of stacked inverse convo-
lutional blocks. To further investigate the impact of differ-
ent encoder-decoder configurations, we conduct additional
ablation studies. Specifically, we explore two settings: (i)
Spatial&Channel, in which both the spatial dimensions and
channel dimensions are modified during the calculation, and
(ii) Channel Only, where only the channel dimension is al-
tered. The corresponding variations in the intermediate fea-
ture shapes are shown in Tab. 1. Note that extra residual
blocks, which do not change the feature shape, are added at
the end of the encoder and at the beginning of the decoder.
A comparison of these two settings is reported in Tab. 2, re-
vealing that the Channel Only setting achieves slightly bet-
ter performance. Therefore, we adopt this configuration as
our final setting.
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Stage

Shape Method
Spatial&Channel Channel Only

Input 512× 200× 100 512× 200× 100

Encoder
256× 200× 100 256× 200× 100
128× 100× 50 128× 200× 100
128× 50× 25 128× 200× 100

Decoder

128× 50× 25 128× 200× 100
128× 100× 50 128× 200× 100
256× 200× 100 256× 200× 100
512× 200× 100 512× 200× 100

Output 256× 200× 100 256× 200× 100

Table 1. The variation in the shape of the intermediate features under the two settings.

Method kernel size stride padding TOPO F1 ↑ JTOPO F1 ↑ APLS ↑ SDA ↑
Spatial&Channel 4 2 1 46.3 38.5 36.9 10.1

Channel Only 5 1 2 46.8 38.8 37.1 10.6

Table 2. Ablation analysis for the structure of the lane prior refinement encoder-decoder.

C. Details of Metrics
In this section, we provide a detailed overview of all metrics
referenced in the main paper.

C.1. Segment-level Metrics
Segment-level metrics evaluate the segment-level graph
G = (V,E), where the vertices V represent centerline seg-
ments and the edges E ⊆ {(x, y) | (x, y) ∈ V 2} denote the
connectivity among these segments.

IoU [4]. This metric measures the intersection-over-union
between predicted and ground truth centerline segments. It
is defined as:

IoU(B1,B2) =
B1 ∩B2

B1 ∪B2
, (7)

where B1,B2 ∈ R60×30 are dense representations (i.e.,
curves rasterized on a grid) of the predicted and ground truth
shapes, respectively.

mAPcf [6]. This metric evaluates the quality of center-
line segment construction by using the Chamfer distance to
determine if a predicted segment matches a ground truth
segment. Predefined Chamfer distance thresholds T =
{0.5, 1.0, 1.5} are used to compute the mean average pre-
cision:

mAPcf =
1

|T |
∑
t∈T

APt. (8)

DETl [8]. Similar to mAPcf , this metric employs the
discrete Fréchet distance to assess the matching qual-
ity between predicted and ground truth segments. The
DETl score is averaged over the match thresholds T =
{1.0, 2.0, 3.0}:

DETl =
1

|T |
∑
t∈T

APt. (9)

TOPll [8]. This metric measures the topological correct-
ness of the centerline segments. Given a ground truth graph
G = (V,E) and a predicted graph Ĝ = (V̂ , Ê), matching
between the ground truth vertices V and the predicted ver-
tices V̂ is established using the Fréchet distance as a simi-
larity measure. We define the matching vertex set V̂ ′, which
satisfies V = V̂ ′ and V̂ ′ ⊆ V̂ ∪{vd}, where {vd} denotes a
set of dummy vertices for unmatched elements. The TOPll

metric is computed as the mean average precision (mAP)
over all vertices:

TOPll =
1

|V |
∑
v∈V

∑
n′∈N ′(v) P (n̂′)1(n̂′ ∈ N(v))

|N(v)|
, (10)

where N(v) is the ordered list of neighbors of vertex v
ranked by confidence, P (n̂′) is the precision of vertex n̂′,
and positive edges are those with confidence greater than
0.5.

C.2. Point-level Metrics
To better assess the quality of the predicted centerline graph
(particularly its continuity) we adopt fine-grained point-



level metrics following CGNet [2]. For this purpose, we
construct a point-level graph G̈ = (V̈ , Ë), where V̈ com-
prises all points from the polylines and Ë denotes the con-
nectivity between these points.

GEO Metric [3]. This metric evaluates the positional ac-
curacy of points. Given the ground truth graph G̈ = (V̈ , Ë)

and the predicted graph ˆ̈G = ( ˆ̈V, ˆ̈E), we first interpolate
(densify) both graphs so that the distance between any two
connected vertices is 0.25 m. A vertex pair (v ∈ V̈ , v̂ ∈ ˆ̈V )
is considered a valid match if the distance between them is
less than 0.5 m. The maximal one-to-one matching is then
determined, yielding the set of matched vertices V̈m. The
GEO precision and recall are computed as follows:

PrecisionGEO =
|V̈m|

| ˆ̈V |
, (11)

RecallGEO =
|V̈m|
|V̈ |

. (12)

Finally, the F1-score is calculated by

F1GEO =
2× PrecisionGEO × RecallGEO

PrecisionGEO + RecallGEO
. (13)

TOPO Metric [3]. While the GEO metric treats each
point independently, it does not consider connectivity. The
TOPO metric incorporates topology by extending the GEO
evaluation. For each matched vertex pair (v, v̂) ∈ S de-
termined by the GEO metric, we traverse the graph for a
distance of less than 8.0 m to construct sub-graphs Sv and
Ŝv̂ from G̈ and ˆ̈G, respectively. The GEO metric is then
computed between these sub-graphs. The TOPO precision
and recall are given by:

PrecisionTOPO =

∑
(v,v̂)∈S PrecisionGEO(Sv, Ŝv̂)

| ˆ̈V |
, (14)

RecallTOPO =

∑
(v,v̂)∈S RecallGEO(Sv, Ŝv̂)

|V̈ |
. (15)

The F1-score is then calculated as

F1TOPO =
2× PrecisionTOPO × RecallTOPO

PrecisionTOPO + RecallTOPO
. (16)

JTOPO Metric [5]. The TOPO metric evaluates the
overall topological correctness, but junction points—where
lanes merge or fork—are particularly critical as they bet-
ter reflect continuity. Junction points are defined as vertices
with an out-degree or in-degree greater than 1. The JTOPO
metric is a variant of the TOPO metric that specifically se-
lects junction points for sub-graph construction and evalua-
tion.

APLS [7]. Based on Dijkstra’s shortest path algorithm,
this metric sums the differences in optimal path lengths be-
tween nodes in the ground truth graph G̈ and the predicted
graph ˆ̈G, and is formulated as:

APLS = 1− 1

N

∑
min

{
1,

|d(a, b)− d(a′, b′)|
d(a′, b′)

}
, (17)

where N is the number of paths, d(a, b) is the length of the
path from vertex a to vertex b, and a′ is the node in the
predicted graph closest to the ground truth node a.

SDA [1]. This metric evaluates the accuracy of predicted
junction points within a circular region around the ground
truth junctions. The Hungarian algorithm is used to deter-
mine the optimal assignment of junction points between the
ground truth graph G̈ and the predicted graph ˆ̈G. A pair of
points is considered a true positive if the distance between
them is less than 1.0 m. The F1 score is then computed
based on the number of true positives.
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