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A. Semantic Granularity

Traditional multi-label classification methods focus more

on the co-occurrence relationship of labels and pay little at-

tention to the semantic granularity of labels. They excel

at handling mutually competitive categories from object-

centric datasets (e.g., VOC [4] and MS-COCO [10]), such

as cat and dog. Due to the demands of practical tasks, cat-

egories defined with rich semantic granularity should be

identifiable. For instance, in image retrieval tasks, the sys-

tem is often expected to retrieve related images at various

semantic levels, such as ”cat” and ”animal.”

Multi-label datasets with diverse semantic granularities,

such as NUS-WIDE and Open Images, primarily consist of

image data sourced from the web, such as Flickr. Since

there is no unified category standard, users annotate images

based on their own understanding. This results in the an-

notation of abstract classes, scene classes, and classes at

varying semantic levels, posing significant challenges for

image recognition, as illustrated in Fig. 1. To further illus-

trate this, we select four common superclasses—animal, ve-

hicle, person, and building—from over 7,000 categories in

Open Images and constructed the category hierarchy shown

in Fig. 2. This hierarchy reveals multiple semantic levels

and a large number of fine-grained categories. However,

the actual hierarchies for all categories in NUS-WIDE and

Open Images are not provided, meaning that the semantic

granularity problem cannot be addressed by relying solely

on the real hierarchical information of these datasets.

B. Text Description Generation Details

The collection of textual data is crucial to coping with

various semantic granularities in our method, whose rich

knowledge can be extracted into class names. Based on

how humans identify novel classes, we collect textual de-

scriptions of visual features, hierarchies, and co-occurrence

scenes about categories. We expect language models to

generate distinct and separate descriptors instead of inte-

grating all elements together, which is beneficial to more

detailed knowledge extraction when reconstructing class

names. The GPT-4o mini model with a temperature param-

eter of 0.7 is used as our language model, which generates

all text results via its public API.

Following the work [13], the prompt template with an

example is used to generate individual attribute descriptors

of visual features, as detailed below:

Q: What are useful visual features for

distinguishing a television in a

Figure 1. Examples annotated by the subset of 1006 classes from

NUS-WIDE.

photo?

A: There are several useful visual

features to tell there is a

television in a photo:

- black or grey

- electronic device

- a large, rectangular screen

- a stand or mount to support the

screen

- one or more speakers

- a power cord

- input ports for connecting to other

devices

- a remote control

Q: What are useful features for

distinguishing a {class_name} in a

photo?

A: There are several useful visual

features to tell there is a {

class_name} in a photo: (Please

generate it according to the example

style above.)

-

To adapt the input form of the CLIP’s text encoder, we fur-

ther post-process each visual attribute to generate a com-

plete text description. We integrate each visual attribute

as a descriptor into the text template “a {class name},
which (is/has/etc) {descriptor}.”. For the

above example, the attribute descriptor ”a large, rectangu-

lar screen” is expanded to the text description ”a television,

which is a large, rectangular screen.”. Attribute descriptors

starting with “a” or “an” apply to “which is”, while others



Figure 2. Hierarchical visualization of the partial categories from Open Images.

often apply to “which has”, such as “a television, which has

black or grey.” for “black or grey”.

The subclasses and superclasses of a class can be ob-

tained by querying the language model through the follow-

ing prompts [11]:

Generate a list of 10 types of the

following category and output the

list separated by ’&’ (without

numbers): {class_name}

Generate a list of 3 super-categories

that the following category belongs

to and output the list separated by

’&’ (without numbers): {class_name}

For example, for the category “cat”, the language model

outputs its superclasses—pet, animal, and mammal—as

well as its subclasses, such as Ragdoll, Sphynx, and oth-

ers. As shown in Fig. 3, we build two 2-level hierar-

chies and a 3-level hierarchy. Elements of each level from

the above hierarchies are retrieved to establish the rela-

tionship between a class and its sub/superclasses through



Dataset Number of Classes Dvdes Dhier Dcos Total Avg. per class

MS-COCO 65 2,644 6,021 1,199 9,864 151.8

NUS-WIDE 1,006 43,607 103,521 18,384 165,512 164.5

Open Images 7,472 313,107 893,837 136,155 1,343,099 179.8

Table 1. Statistics on the number of text descriptions generated by GPT for different datasets.

pet animal mammal

cat Sphynx......Ragdoll

cat

Sphynx......Ragdoll

cat

pet animal mammal

Figure 3. Semantic hierarchies of the category “cat”.

Is-A [11], such as “a {class name}, which is a

{superclass}.”. We show a text description example

for each hierarchy, such as “a cat, which is a pet.”, “a Rag-

doll, which is a cat.” and “a Ragdoll, which is a cat, which

is a pet.”.

We query the language model to get a list of co-

occurrence scenes using the following prompt:

Please make a list of possible

backgrounds where a {class_name}

appears in a photo:

-

Scenes generated by LLM and the class name of a

class are fused together to form scene descriptions, i.e.,

“a {class name}, which appears together

with the {scene}.”. For example, we get a list of

scenes that co-occur with a cat: living room, garden, park,

bedroom, pet store, and so on. Each scene is integrated into

the text description, such as “a cat, which appears together

with the garden.” for “garden”.

We try to keep the text descriptions of the above three

types in a consistent format as much as possible, which

helps to eliminate noise from different sentence forms and

allows the text encoder to focus on the discriminative text

data. The post-processed text descriptions, including visual

attributes Dvdes, hierarchical relationships Dhier, and co-

occurrence scenes Dcos, are added to the text corpus as sam-

ples for training. As shown in Tab. 1, we count the number

of samples in the three text description sets for each dataset

and the average number of text samples in each category.

The number of text samples in each category varies very

little for different datasets.

Discussion: Differences in the Collection of Text De-

scriptions for Language-Driven Methods. TaI-DPT [5]

tunes prompts by treating text data as images, whereas

CoMC [12] uses text data to train a cross-modal classifier.

We also use text descriptions as training samples to tackle

the multi-label zero-shot learning task. In contrast, the text

content used in our method is completely different from

theirs. The text descriptions of TaI-DPT come from pub-

lic image caption datasets(e.g.,MS-COCO, Opem Images).

The captions in these datasets are annotated by humans and

have high reliability with limited numbers. CoMC lever-

ages GPT to generate text data in order to save labor and

break through quantity limitations. The common point be-

tween the text descriptions of TaI-DPT and CoMC is that

they both describe the content of photos containing specific

categories, thereby deriving category labels for supervised

learning. For example, the description “A cat perches curi-

ously on the hood of a parked car.” derives the labels “cat”

and “car”. To consider the diversity of text descriptions,

synonym descriptions are added to the training corpus to

derive target labels. For example, the description “A girl

is sitting on the sofa with her puppy.” derives the labels

“person” and “dog”. This requires the establishment of a

synonym vocabulary that maps one-to-one with the target

classes, which brings a lot of work to text post-processing.

In addition, many image captions generated by GPT may

not be real and need to be filtered manually.

Our method of collecting text descriptions is almost en-

tirely automatic. After accessing GPT through the designed

prompts and obtaining the results, the text descriptions are

output according to the corresponding templates. GPT’s

output of category-related descriptions is relatively reliable

and does not require manual filtering. Compared with the

text descriptions of TaI-DPT and CoMC, the text descrip-

tions of our method are based on the descriptions of the

relationships and features for a class itself, such as “a cat,

which is a pet.” and “a cat, which has whiskers on the

face.”. Furthermore, the number of text descriptions trained

in our method is significantly less than that required by

CoMC. For example, for 81 unseen classes of NUS-WIDE,

CoMC needs 40,000 sentences to train a classifier, while

our method only uses 12,951 sentences to reconstruct class

names.



Baseline Dvdes Dhier Dcos Task
MS-COCO NUS-WIDE

mAP F1 (Top-3) F1 (Top-5) mAP F1 (Top-3) F1 (Top-5)

✓
ZSL 74.6 48.0 35.1 46.5 38.4 35.5

GZSL 57.0 46.4 41.2 16.3 18.2 20.8

✓
ZSL 80.4 50.9 36.9 51.3 45.2 42.9

GZSL 64.1 52.2 46.8 17.5 19.3 22.1

✓
ZSL 81.9 51.5 37.2 51.4 45.1 42.8

GZSL 66.0 53.4 47.8 17.5 19.2 22.2

✓
ZSL 81.5 50.6 36.9 51.5 45.4 43.1

GZSL 65.1 51.9 46.6 17.7 19.4 22.2

✓ ✓ ✓
ZSL 82.2 52.2 37.5 51.7 45.9 43.2

GZSL 66.7 54.8 49.0 17.7 19.5 22.5

Table 2. Ablation study for different types of text descriptions. In the ZSL and GZSL tasks, mAP over all classes and F1 scores of Top-3

and Top-5 predictions on MS-COCO and NUS-WIDE are reported.

Methods Task
MS-COCO NUS-WIDE

mAP F1 (Top-3) F1 (Top-5) mAP F1 (Top-3) F1 (Top-5)

Mean
ZSL 82.3 51.3 37.2 51.5 44.8 42.8

GZSL 66.7 53.7 48.2 17.7 19.5 22.4

P-Eigen
ZSL 82.2 51.3 37.1 50.4 44.5 42.6

GZSL 65.6 53.6 47.9 17.3 19.4 22.3

Ours
ZSL 84.1 52.8 37.4 51.7 47.4 44.4

GZSL 69.6 59.4 51.0 17.9 19.5 22.5

Table 3. Comparison of text corpus integration methods. Mean and P-Eigen represent the average and the principal eigenvector, respec-

tively.

C. Experiment Details

C.1. Dataset Details

MS-COCO is an object-centric dataset with no semantic

granularity level. It is split into 48 seen classes and 17

unseen classes in the works [1, 2]. NUS-WIDE and Open

Images (v4) contain a large number of categories and are

rich in semantic granularity. The NUS-WIDE dataset is a

web-based collection comprising 107,859 test images, en-

compassing 81 human-verified labels along with 925 labels

obtained from Flickr user tags. As in LESA [7], the 925 la-

bels and the remaining 81 labels are treated as seen and un-

seen, respectively. Open Images (v4) is a large-scale dataset

including nearly 9 million training images and 125,456 test

images. Following previous studies [6, 7], 7,186 labels with

at least 100 images per class are designated as seen labels

in the training set. The 400 most frequent test labels are se-

lected as unseen labels, each being absent from the training

set.

C.2. Implementation Details

The GPT-4o mini model [3] is used as our LLM to collect

all text descriptions. We can access its public API to get

the answer to a prompt containing a class name and call

the API multiple times with the same prompt to get richer

text results. Our backbone adopts the pre-trained CLIP with

the image encoder ViT-B/16 and the corresponding text en-

coder. During training, the same frozen text encoder is used

to encode both the class prompts and the text descriptions.

The learnable class name vectors are randomly initialized.

The only training parameters of our model are the class

name vectors for all classes and they are optimized by the

SGD optimizer with a batch size of 512 text descriptions in

30 epochs. Meanwhile, a cosine learning rate decay is used,

and the initial learning is set to 1e-4. During inference, the

images of input size 224 × 224 are fed into the image en-

coder. An image is cropped into K ∈ {4, 9} snippets to

perform semantic aggregation. The temperature coefficient

τs is set to 0.05 for semantic aggregation of local tokens.

Furthermore, we perform a sensitivity analysis for hyperpa-

rameters Nc∗ and λ to choose the appropriate value, respec-

tively. All experiments are conducted on Tesla V100 with a

fixed random seed.

D. More Experimental Results

D.1. Ablation Study for Text Descriptions

To evaluate the effectiveness of each type of text description

in reconstructing class names, we train class names sep-

arately using three different types of descriptions, includ-

ing visual attributes Dvdes, hierarchical relationships Dhier,

and co-occurrence scenes Dcos. The results are shown in



Snippets(K) Task
MS-COCO NUS-WIDE

mAP F1 (Top-3) F1 (Top-5) mAP F1 (Top-3) F1 (Top-5)

1 (1× 1)
ZSL 84.1 52.8 37.4 51.7 47.4 44.4

GZSL 69.6 59.4 51.0 17.9 19.5 22.5

4 (2× 2)
ZSL 85.3 53.5 37.7 53.3 48.4 45.3

GZSL 71.4 60.4 51.9 17.9 19.3 22.4

9 (3× 3)
ZSL 86.1 53.6 37.7 53.6 48.7 45.6

GZSL 72.9 60.4 52.0 17.5 18.8 22.0

16 (4× 4)
ZSL 85.9 53.4 37.6 53.5 48.7 45.7

GZSL 72.9 60.4 51.8 17.2 18.4 21.6

Table 4. Effect of the number of snippets on the performance of MSSA.

× 1e-4

(a) (b)

(d)(c)

Figure 4. Effect of hyperparameters. The results of the GZSL task

with respect to hyperparameters Nc
∗ and λ on MS-COCO (top

row) and NUS-WIDE (bottom row) are shown.

Tab. 2. The baseline setup remains consistent with that in

Tab.3 of the main paper, and no pair-based loss is applied to

reconstructed class names.

Compared to the baseline, our approach significantly im-

proves performance. For MS-COCO, class names recon-

structed using hierarchical relationship descriptions achieve

the best results, while combining all three types further im-

proves performance. For NUS-WIDE, co-occurrence scene

descriptions yield the best performance, though the differ-

ences among the three types of descriptions are relatively

small. Nonetheless, integrating all three types still leads to

performance gains.

D.2. Analysis of Text Integration Methods

We unify the embeddings of all class-related text descrip-

tions into a single representation for each class using either

the mean or the principal eigenvector. To verify the effec-

tiveness of our class name reconstruction method, we com-

pare it with these two approaches. For a fair comparison,

our method does not include MSSA. As shown in Tab. 3,

for MS-COCO, our method outperforms both the mean and

principal eigenvector approaches in the ZSL task, improv-

ing mAP and F1 @ Top-3 and Top-5 by 1.8%, 1.5%, and

0.2%, and by 1.9%, 1.5%, and 0.3%, respectively. In the

GZSL task, our method achieves even greater gains, sur-

passing the two approaches by 2.9%, 5.7%, and 2.8% and

by 4.0%, 5.8%, and 3.1% for mAP and F1 @ Top-3 and

Top-5. For NUS-WIDE, our method does not have a signif-

icant performance advantage in the GZSL task. In the ZSL

task, our method outperforms both the mean and principal

eigenvector approaches, improving mAP and F1 @ Top-3

and Top-5 by 0.2%, 2.6%, and 1.6%, and by 1.3%, 2.9%,

and 1.8%, respectively.

D.3. Varying the Hyperparameters

We conduct a sensitivity analysis on the learnable class

name token length Nc∗ and balance hyperparameter λ

across both datasets, evaluating their impact on mAP and

F1 scores at Top-3 and Top-5 predictions. Since both seen

and unseen classes are treated as novel classes, we focus

on the influence of hyperparameters in the GZSL task. For

MS-COCO, as shown in Fig. 4(a), mAP and F1 scores im-

prove when Nc∗ exceeds 1, reaching optimal performance

at Nc∗ = 4. A shorter class name token length limits the

learning of semantic knowledge. Additionally, as λ varies,

F1 scores fluctuate significantly in Fig. 4(b). We select λ

based on the best F1 scores, setting it to 0.2. For NUS-

WIDE, changes in Nc∗ have minimal impact on the metrics,

particularly F1 scores, as seen in Fig. 4(c), with the best per-

formance observed at Nc∗ = 3. In Fig. 4(d), λ significantly

affects F1 scores when it exceeds 1e − 4, suggesting that

an excessively large λ may hinder the optimization of the

distance loss LMSE . The optimal choice is λ = 1e − 4.

All our losses are summed together. In the GZSL task, as

the number of novel categories in the dataset increases, λ is

progressively reduced to minimize the impact of LD.

In addition, we analyze the effect of the number of

snippets (K) on the Multi-Snippet Semantic Aggregation

(MSSA) module. The number of snippets directly affects



Dataset Task
no merging merging

mAP F1 (Top-3) F1 (Top-5) mAP F1 (Top-3) F1 (Top-5)

NUS-WIDE
ZSL 51.7 47.4 44.4 51.7 47.4 44.4

GZSL 17.9 19.5 22.5 32.1 25.8 31.0

Table 5. The results of PBL after synonym merging.

Method Task
MS-COCO NUS-WIDE

mAP F1 (Top-3) F1 (Top-5) mAP F1 (Top-3) F1 (Top-5)

RCNn w/o MSSA
ZSL 84.1 52.8 37.4 51.7 47.4 44.4

GZSL 69.6 59.4 51.0 17.9 19.5 22.5

RCNn w/ MSSA
ZSL 86.3 53.6 37.7 53.3 48.4 45.3

GZSL 73.1 60.7 52.0 17.9 19.3 22.4

RCNn + IFT w/o MSSA
ZSL 85.0 53.8 37.9 51.4 46.4 43.4

GZSL 78.1 67.5 57.5 19.8 23.3 27.2

RCNn + IFT w/ MSSA
ZSL 87.0 54.4 38.1 53.8 47.9 44.8

GZSL 80.9 68.2 58.5 19.7 23.3 27.5

Table 6. The performance of RCNn integrated with IFT.

the balance between global and local semantic predictions.

We explore this effect on the object-centric dataset MS-

COCO and the multi-granularity semantic dataset NUS-

WIDE. For each image, we crop it into 1× 1, 2× 2, 3× 3,

and 4 × 4 snippets, corresponding to K = 1, 4, 9, 16, re-

spectively. The experimental results are shown in Tab. 4.

For MS-COCO, all metrics improve as K increases, with

mAP showing particularly significant gains. The best per-

formance on both ZSL and GZSL tasks is achieved when

K = 9. Both the seen and unseen classes in MS-COCO

are object categories, and increasing K provides more fine-

grained local semantic information. Considering the rela-

tively small size of its test set, both K = 4 and K = 9 are

selected. On NUS-WIDE, as K increases, all metrics on

the ZSL task show improvements. However, on the GZSL

task, the performance does not improve and even drops at

K = 4, with a more significant decline observed at K = 9.

This is mainly because the unseen classes in NUS-WIDE

are primarily object categories, which require more fine-

grained local semantic information. This trend is consis-

tent with that observed on MS-COCO. In contrast, the seen

classes in NUS-WIDE are numerous and semantically di-

verse, with abstract, scene, and parent classes appearing fre-

quently. This leads the seen classes to favor global semantic

information, resulting in the best GZSL performance when

K = 1. Taking all factors into consideration, we select

K = 4 for NUS-WIDE.

D.4. Merging of Synonyms

As discussed in Section 4.3 of the main paper, ranking-

based evaluation metrics (e.g., mAP and F1 score) may not

accurately assess the predictions due to the limitations of

existing ground-truth. To further validate that the ground-

truth labels are insufficient for fairly evaluating our method,

we adopt the evaluation protocol proposed in [9] to re-

assess the predictions. Following its synonym matching ap-

proach, we identify and merge synonyms within the seen

classes to avoid duplicate predictions. Specifically, we

use the CLIP’s text encoder to encode the reconstructed

class names, and discover synonyms based on the similar-

ity between class embeddings for subsequent merging. The

predictions are then aggregated according to the synonym

merging rules, which ensures that the Top-3 and Top-5 pre-

dictions for each image contain minimal redundant synony-

mous classes, thereby better matching the diverse classes

in the ground-truth labels. The results of PBL after syn-

onym merging are shown in Tab. 5, where all metrics on

the GZSL task are significantly improved. This indicates

that the ground-truth labels of seen classes for each image

omit many synonymous annotations, making them insuffi-

cient for accurately evaluating the performance of seman-

tic granularity-aware multi-label classification. In the ZSL

task, the unseen classes do not contain synonyms, and thus

the performance remains unchanged.

D.5. Image­based Fine­tuning

Our method (RCNn) uses textual descriptions to recon-

struct class names under a fixed prompt context. It can fur-

ther incorporate image-based fine-tuning (IFT) to learn the

prompt context dynamically. In line with vision-driven ML-

ZSL approaches, we fine-tune the prompts using image data

from seen classes. Specifically, we adopt the prompt learn-

ing method of Independent V-L Prompting in [8], where the

class names are those reconstructed from textual descrip-

tions. The experiments are conducted using RCNn with

(w/) and without (w/o) MSSA, and the results are presented



in Tab. 6. For MS-COCO, integrating IFT with RCNn leads

to performance improvements on both the ZSL and GZSL

tasks. The improvement is particularly significant for the

GZSL task. For NUS-WIDE, incorporating IFT signifi-

cantly improves performance on the GZSL task, while it

leads to a decline in performance on the ZSL task.

D.6. Visualization of Attention Maps

As shown in Fig. 5, we visualize attention maps for several

images from NUS-WIDE. Compared to CLIP, our method

captures relevant regions with greater precision. For in-

stance, in the last image, while CLIP highlights a broader

area for “garden” and “grass,” our method focuses on the

most relevant regions. Additionally, our approach effec-

tively detects small objects, such as “window.” It also main-

tains semantic consistency across different granularity lev-

els, as seen with “tiger” and “animal.” Furthermore, scene

categories like “sky,” “reflection,” “valley,” and “garden”

are well recognized.

E. Limitations

Our method relies on a large language model (LLM), and

its performance is closely tied to the quality of the LLM’s

output. Given the vast number of categories in large-scale

datasets (e.g., Open Images) and their complex semantic hi-

erarchies, the LLM’s inherent knowledge limitations often

prevent it from generating accurate attributes for many cat-

egories. Additionally, its hallucinations may introduce at-

tributes that do not exist in certain classes, posing a poten-

tial risk of misleading our approach. The hierarchical re-

lationships generated by LLM are generalized and may not

align with the actual hierarchical relationships in a dataset,

leading to inconsistencies in parent and child category pre-

dictions.
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Figure 5. Visualization of attention maps for CLIP (top row) and our method (bottom row) on NUS-WIDE test images.


