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Table 1. Runtime efficiency comparison on KITTI 2015.

Method Feature Extractor Iterations Time (s) Res. GPU

RAFTStereo [9] ResNet-like 32 0.17 1242 x 375 5000Ada
DLNR [22] Transformer 32 0.27 1242 x 375 5000Ada

Selective-IGEV [16] ResNet-like 32 0.21 1242 x 375 5000Ada
MochaStereo [3] ResNet-like 32 0.28 1242 x 375 5000Ada

Former-RAFT [21] ViT-Large 32 0.47 1242 x 375 5000Ada

Ours ViT-Base 24 0.20 1242 x 375 5000Ada

1. Overview

In this supplementary material, we provide additional de-
tails of our method and experiments, including:

• Analysis on runtime efficiency [21].
• The detailed experimental settings.
• More ablation studies.
• The data capacity of SMoEStereo when more synthetic

samples are used for training.
• More zero-shot visualization results.

2. Analysis on Runtime Efficiency

Our SMoEStereo achieves better inference efficiency than
most RAFT-based methods, as shown in Tab. 1. Although
VFMs slightly increase feature extraction time, their robust
features significantly reduce the need for iterative disparity
refinements. Specifically, our GRU performs only 24 itera-
tions vs. 32 iterations in [9, 16, 21, 22, 22], thus improving
overall efficiency. Notably, SMoE offers a flexible selection
mechanism to control the number of MoE modules, reduc-
ing inference time for various real-world applications. We
benchmark inference runtime on KITTI 2015 (1242×375)
using an RTX 5000 Ada GPU.

3. More Details about Experiments

3.1. More Details about VFMs.
SAM. Aligning with the methodology described in the
foundational paper [5], we employ the ViT-Large archi-
tecture as our image encoder, making use of pre-trained
weights that were trained on SA-1B [5] for a promptable
segmentation task. The patch size of this model is set to
16×16, and each layer is designed to output features with a
dimensionality of 768, summing up to a total of 12 layers.
The positional embeddings of the model are upscaled to a
length of 1024 via bicubic interpolation. From this model,
we extract features from the 2nd, 5th, 7th, and 11th layers
layers and feed them into the decoder.

DAM& DAMV2. DAM and DAMV2 designed a data en-
gine to automatically generate depth annotations for un-
labeled images, enabling data scaling up to an arbitrary
scale. It collects 62M diverse and informative images from
eight public large-scale datasets, e.g., SA-1B [5], Open Im-
ages [6], and BDD100K [19] for training an initial MDE
mode in a self-training manner [7]. Similar to SAM, we
also employ the ViT-Base capacity as our image encoder.
The patch size of this model is set to 16×16, and each layer
is designed to output features with a dimensionality of 128,
summing up to 12 layers. The positional embeddings of the
model are upscaled to a length of 1024 via bicubic interpo-
lation. From this model, we extract features from the 2nd,
5th, 8th, and 11th layers and feed them into the subsequent
cost aggregators.
DINOv2. Our choice of backbone for this study is
DINOv2-Base, which has been distilled from DINOv2-
Large. As noted in the original documentation, DINOv2-
Base occasionally surpasses the performance of DINOv2-
Large [11]. we apply equivalent processing to both the posi-
tional embeddings and patch embed layer of DINOv2-Base.
The features extracted from the 2nd, 5th, 8th, and 11th lay-
ers are subsequently fed into the decode head. DINOv2
is originally pretrained in a self-supervised fashion on the
LVD-142M [11] dataset, following the procedures outlined
in its respective paper.

3.2. More Details about PEFT Methods.
1. VPT, Adapter-Tuning, AdaptFormer, and LoRA.
Based on extensive experimentation, we have optimized the
implementation of PEFT methods for DAMV2 and SAM,
utilizing PEFT configurations that enhance robust perfor-
mance. These methods include: 1) VPT: We use the VPT-
Deep configuration and incorporate 256 learnable tokens
within each ViT layer (12 layers for ViT-Base).

2) LoRA: Applied to the query and value components for
self-attention, default configured with a rank of 128.

3) AdaptFormer: Similar to LoRA, equipped with MLP
layers and employs a bottleneck design with a default ank
of 32, initialized using LoRA, and notably omits layer nor-
malization.

4) AdapterTuning: We adopt a DPT decoder strat-
egy [12] with multi-scale fusion, utilizing input channels
of 128 dimensions.
2. Frozen, Full Finetuning, and LoRA. We define the dif-
ferences between these fine-tuning methods.

Frozen: The VFM backbone is frozen and SMoE mod-
ules are removed. Only the shallow CNN (Fig.2a) and sub-
sequent GRU modules are trainable.



Table 2. Zero-shot Non-Lambertian Generalization. Comparison
with state-of-the-art models. Networks trained on SceneFlow. We
use the officially provided weights.

Model
>2 px >4 px >6 px >8 px Avg.

(%) (%) (%) (%) (px)

PSMNet [2] 34.5 24.8 20.5 17.8 7.30
RAFTStereo [9] 17.8 13.1 10.8 9.24 3.60

Selective-RAFT [16] 20.0 15.1 12.5 10.9 4.12
Selective-IGEV [16] 18.5 14.2 12.1 10.8 4.38

DLNR [22] 18.6 14.6 12.6 11.2 3.97

SMoEStereo (Ours) 11.3 7.16 6.47 5.13 2.09

Full Finetuning: All components are trainable.
LoRA: The single LoRA layer (fixed rank=128) is used

within each ViT block. Besides, Tab. 5 explores varying
ranks to demonstrate SMoE’s dynamic design effectiveness.

4. More Ablation Studies

In this section, we systematically evaluate the components
of our framework through four key analyses. First, we con-
duct cross-domain generalization ablations on SceneFlow,
dissecting the contribution of each SMoE component to
domain-shift robustness. Next, we investigate architectural
compatibility, validating SMoE’s integration with diverse
robust training frameworks (i.e., DKT framework [20]) and
classical stereo architectures (e.g., IGEVStereo [17], PSM-
Net [2]). Additionally, We further analyze the computa-
tional efficiency of MoE LoRA and MoE Adapters by pro-
filing their dynamic token allocation patterns across net-
work layers, quantifying parameter savings under varying
scene complexities. Concurrently, we evaluate the effec-
tiveness of MoE balance losses in ensuring equitable expert
utilization, demonstrating their role in stabilizing training
while maintaining task performance. Finally, we assess data
scalability by measuring performance gains from incremen-
tal synthetic data integration.
Ablation of Main Components. Table 3 presents the cross-
domain generalization accuracy results, demonstrating that
the integration of MoE LoRA and MoE Adapter layers sig-
nificantly enhances disparity estimation performance com-
pared to the vanilla VFM baseline (ID = 1). This im-
provement can be attributed to the inherent capability of
our MoE architecture to adaptively learn domain-invariant
features while preserving the transferable knowledge ac-
quired from dense prediction tasks, thereby fostering robust
generalization across diverse scenarios. However, the in-
creased computational overhead associated with additional
MoE modules (ID = 4) highlights a trade-off between per-
formance and efficiency. To address this, our proposed deci-
sion network effectively reduces redundancy by selectively
activating the most relevant MoE components, achieving a
balance between computational efficiency and high perfor-
mance (ID = 6). Notably, replacing the learned usage pol-

icy with a randomly generated one of comparable compu-
tational cost (ID = 5) results in a significant decline in ac-
curacy, underscoring the critical role of the learned policy
in optimizing expert selection and ensuring superior cross-
domain adaptability.
Dynamic Expert Selection Mechanism. We conduct a
comprehensive performance evaluation of SMoE across
varying ranks of Low-Rank Adaptation (LoRA) for domain
generalization, as detailed in Table 4. The zero-shot per-
formance exhibits notable variability across different tar-
get domains, highlighting the critical influence of LoRA
rank selection on model adaptability and generalization ca-
pabilities. This variability underscores the necessity of
dynamically optimizing rank configurations to tailor the
model’s representational capacity to the unique characteris-
tics of each domain, thereby maximizing cross-domain per-
formance and ensuring robust generalization in diverse sce-
narios. Overall, this fully demonstrates the effectiveness of
dynamic expert selection mechanisms with varying ranks.
Comparing SMoE with Different Rank of LoRA. We
conduct a comprehensive performance comparison of
SMoE against Low-Rank Adaptation (LoRA) models with
varying ranks (e.g., r=4, 8, 32, 64, 128) for cross-domain
generation tasks, as detailed in Table 5. Our analysis reveals
stark variability in zero-shot generalization across distinct
target domains (e.g., indoor and outdoor scenes) For vari-
ous target domains, the zero-shot performance demonstrates
significant variability, influenced by the specific ranks of
Low-Rank Adaptation (LoRA) models. This variability un-
derscores the importance of selecting appropriate ranks to
optimize performance across different domains. Naively
adopting the single uniform LoRA is inadequate for robust
stereo matching.
DKT framework [20] on our SMoEStereo. DKT [20] is

a robust training framework that was trained on real-world
target datasets and demonstrates strong generalization capa-
bilities across diverse datasets. In this section, we provide
a comprehensive experimental analysis of the DKT frame-
work, highlighting its strengths and limitations. Specifi-
cally, under identical DKT settings, our method achieves
significant performance improvements over DKT-RAFT, as
evidenced in Tab. 6. These results underscore the effective-
ness of our proposed Sparse Mixture of Experts (SMoE)
design, demonstrating its ability to enhance robustness and
adaptability in challenging scenarios.
Compatibility of Different Baselines. Our SMoE design
enhances the generalization performance of different base-
lines. The zero-shot results of all baselines are consis-
tently improved within our SMoE framework, as detailed
in Tab. 8. For example, the Bad-error rate of PSMNet [2]
on each dataset decreases by 32%, 22%, 37%, 47%, and
48%, respectively. A significant improvement is achieved
in Middlebury since there is much abundant semantic infor-



Table 3. Cross-domain performance ablation study trained on SceneFlow. DAMV2 (ViT-Base) used.

ID MoE MoE Decision Random KITTI 2012 KITTI 2015 Middlebury ETH3D Number of Used Params.
LORA Adapter Network Decision D1 All D1 All Bad 2.0 Bad 1.0 MoE (M)

1 - - - - 11.7 15.4 24.6 16.2 0 0
2 ✓ - - - 4.31 4.93 7.60 2.56 12 2.29
3 - ✓ - - 4.45 5.03 7.43 2.41 12 4.49
4 ✓ ✓ - - 4.19 4.79 7.14 1.99 24 6.77
5 ✓ ✓ - ✓ 4.51 5.19 8.32 3.04 14 2.86
6 ✓ ✓ ✓ - 4.22 4.86 7.05 2.10 14 2.86

Table 4. Ablations of the dynamic selection of MoE LoRA layers.

Setting VFM KIT 2012 KIT 2015 Middle ETH3D
Bad 3.0 Bad 3.0 Bad 2.0 Bad 1.0

MoE LoRA (Rank = 4) DAMV2 4.55 5.01 7.93 3.08
MoE LoRA (Rank = 8) DAMV2 4.60 5.11 8.01 2.93
MoE LoRA (Rank = 16) DAMV2 4.74 5.17 7.82 3.39
MoE LoRA (Rank = 32) DAMV2 4.37 4.97 8.10 2.87

SMoE w.o/ MoE Adapter DAMV2 4.31 4.93 7.60 2.56
SMoE DAMV2 4.22 4.86 7.05 2.10

Table 5. Zero-shot performance comparison of the proposed
SMoE against other finetuning methods. Params (M) Train/Test
refers to the learnable and additional activated parameters within
the VFM backbone for the training and inference phases, respec-
tively.

Backbone
Fine-tune Params (M)KIT 2012KIT 2015 Middle ETH3D
Method Train/Test Bad 3.0 Bad 3.0 Bad 2.0 Bad 1.0

DAMV2 [18]

LoRA [4] (rank=4) 0.15/0.15 4.62 5.31 7.92 3.12
LoRA [4] (rank=8) 0.30/0.30 4.44 5.07 8.22 3.08
LoRA [4] (rank=16) 0.59/0.59 4.81 5.43 7.64 2.87
LoRA [4] (rank=32) 1.18/1.18 4.56 5.21 8.43 2.79

(ViT-base) LoRA [4] (rank=64) 2.36/2.36 4.51 5.19 7.92 2.94
LoRA [4] (rank=128) 4.72/4.72 4.47 5.03 7.67 2.83

SMoE (Ours) 6.81/2.86 4.22 4.86 7.05 2.10

SAM [5]

LoRA [4] (rank=4) 0.15/0.15 4.41 5.04 7.85 2.99
LoRA [4] (rank=8) 0.30/0.30 4.63 5.30 7.68 3.02
LoRA [4] (rank=16) 0.59/0.59 4.55 5.19 7.98 2.81
LoRA [4] (rank=32) 1.18/1.18 4.48 4.98 8.35 2.76

(ViT-base) LoRA [4] (rank=64) 2.36/2.36 4.60 5.23 8.02 2.66
LoRA [4] (rank=128) 4.72/4.72 4.49 5.17 7.76 2.78

SMoE (Ours) 6.81/4.06 4.27 4.89 7.10 2.07

mation for reasoning. A similar improvement can be ob-
served even when the robust CFNet [15] is utilized as the
baseline, with the Bad-error rate being decreased by 15%,
17%, %, 52%, and 45%, respectively. Furthermore, we ob-
serve that integrating our SMoE into the IGEV [17] base-
line results in a significant improvement in cross-domain
performance. Notably, our approach does not require any
specialized losses or additional modules to enhance domain
generalization performance, making it broadly applicable to
most learning-based stereo frameworks.
The Effectiveness of Kernel Sizes of Adapter Layers. As
introduced in Section 3, the designed CNN adapters with
different receptive fields incorporate local geometry priors
of input samples into the ViT block. From Table 7, we
present a comparative analysis of the cross-dataset perfor-
mance of the proposed SMoEStereo, utilizing individual
Adapter experts with varying kernel sizes. Notably, differ-
ent datasets demonstrate distinct optimal Adapter experts.

Figure 1. Computational cost throughout the network. The
kept/activated ratio of MoE LoRA modules (top) and MoE
Adapter modules (bottom) throughout the backbone are reported.

Our SMoE method adeptly identifies the most suitable local
feature extractor for each input, achieving superior results
compared to employing a single fixed Adapter. It is impor-
tant to note that the SMoE approach introduces only negli-
gible additional activated parameters, underscoring that the
performance improvements are attributed to the proposed
MoE learning scheme rather than scaling up the model. In
summary, these findings comprehensively validate the ef-
fectiveness of our SMoE design.
Computational Saving throughout the Network.
SMoEStereo leverages computational redundancy to en-
hance the efficiency of VFMs. We collect usage policies
on MoE LoRA and MoE Adapter selection predicted by
our method across four real-world datasets, illustrating the
distribution of computational cost (i.e., percentage of MoE
LoRA/Adapter retained) throughout the backbone. As
shown in Fig. 1, SMoEStereo strategically allocates more
computation to MoE LoRA layers in the earlier stages
of the network while reserving MoE Adapter layers for
the latter stages. This allocation suggests an optimization
where MoE LoRA layers, which require less computational
effort, handle initial processing, and MoE Adapter layers,
functioning as decoders, manage more complex tasks in
later stages of the ViT layers. This approach not only
balances the computational load but also ensures efficient
processing and superior performance across different
scenarios, highlighting the robustness and adaptability of
SMoEStereo.
The Effectiveness of MoE Balance Loss. The router net-
work often assigns disproportionately large weights to a



Table 6. Comparison with DKT-RAFT trained on KITTI.

Method
KIT 2012 KIT 2015 DrivingStereo MIDDLE ETH3D

Noc All Bg All Sunny Cloudy Rainy Foggy Avg. (Bad 2.0) (Bad 1.0)

DKT-RAFT [20] 1.43 1.85 1.65 1.88 1.85 1.46 1.32 5.44 2.52 7.51 2.28

DKT-SMoE 1.17 1.56 1.47 1.63 1.46 1.21 1.12 4.38 2.04 7.13 1.99
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Figure 2. Zero-shot performance of CFNet [15], IGEVStereo [17], and SMoEStereo on diverse scenes. Note that, all models are only
trained on the SceneFlow dataset. In the middle row, DS denotes the DrivingStereo dataset.

Table 7. Impacts of the kernel sizes of Adapter layers and the
effectiveness of SMoE.

Setting
KITTI 2015 Middlebury ETH3D

EPE D1 All EPE Bad 2.0 EPE Bad 1.0

Kernel Size = 3 0.62 1.54 0.74 4.26 0.16 0.69
Kernel Size = 5 0.66 1.62 0.77 4.61 0.15 0.68
Kernel Size = 7 0.68 1.74 0.81 4.66 0.17 0.75
Kernel Size = 9 0.64 1.62 0.76 4.41 0.15 0.66

SMoE 0.60 1.51 0.71 4.12 0.15 0.63

few experts [14], leading to overfitting issues. To counter-
act this, we introduce an MoE balance loss component to
ensure equal importance among all experts, preventing the
model from getting trapped in local optima. In this subsec-
tion, we evaluate the impacts of the proposed Lblc. Table 9

Table 8. Zero shot performance comparisons on different base-
lines.

Models
VFM KIT 2012 KIT 2015 Middle ETH3D

Capacity Bad 3.0 Bad 3.0 Bad 2.0 Bad 1.0

PSMNet [2] - 6.0 6.3 15.8 10.2
PSMNet-SMoE ViT-Base [18] 4.1 4.9 8.3 5.4

CFNet [15] - 4.7 5.8 15.3 5.8
CFNet-SMoE ViT-base [18] 4.0 4.8 7.4 3.2

IGEV [17] - 5.1 5.6 7.1 3.6
IGEV-SMoE ViT-base [18] 4.1 4.7 6.8 2.0

presents the cross-dataset evaluation performance with dif-
ferent values of the Lblc loss weight λ1 in Eq. (11), where
λ1 = 0 represents no MoE loss applied. The application
of Lblc effectively mitigates router overfitting and consis-
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Figure 3. Zero-shot visual comparison of Frozen, Full-Finetuning, and our SMoE on diverse scenes. Note that, all models are only trained
on the SceneFlow dataset. The rows (1 & 3 & 5 & 7) indicate Winner-Take-All (WTA) disparity from the feature correlation (1/4 scale)
achieved by the dot products among left and right features before the subsequent cost aggregation network. WTA disparity, when enhanced
with our SMoE-equipped pre-trained VFM, exhibits significantly less noise compared to other vanilla finetuning methods for VFMs.

tently enhances model generalizability. The model achieves
optimal generalizability with λ1 set at 1. These findings un-
derscore the critical importance of balanced expert contri-
butions within the MoE framework. The Lblc component

ensures that the learned representations are more diverse
and generalizable across different datasets. This is espe-
cially crucial in practical applications where data distribu-
tion can vary significantly. The optimal performance ob-



Table 9. Effectiveness of the proposed loss components.

λ
KITTI 2015 Middlebury ETH3D

EPE D1 All EPE Bad 2.0 EPE Bad 1.0

λ = 0 0.69 1.68 0.79 4.74 0.18 0.82
λ = 0.1 0.65 1.60 0.75 4.42 0.17 0.74
λ = 0.5 0.60 1.48 0.74 4.17 0.15 0.67
λ = 1 0.60 1.51 0.71 4.12 0.15 0.63
λ = 5 0.63 1.57 0.74 4.25 0.16 0.71

Table 10. Gains from data capacity. SF, VK2, and CRE denote the
SceneFlow, Virtual KITTI2, and CREStereo datasets.

SF VK2 CRE
KITTI 2012 KITTI 2015 Middlebury ETH3D

D1 All D1 All Bad 2.0 Bad 1.0
√

- - 4.22 4.86 ‘7.05 2.10√ √
- 3.21 3.90 7.43 2.19√ √ √

3.15 3.78 6.79 1.90

served at λ1 = 1 suggests that balancing expert utilization
and regularization is vital.

Gains from More Synthetic Data. In the main paper, we
trained our model solely on the SceneFlow dataset [10].
This section investigates how increased data capacity af-
fects SMoEStereo’s performance with additional training
samples. We consider two additional synthetic datasets:
Virtual KITTI2 [1], a synthetic outdoor driving dataset
with 20K samples, and CREStereo [8], a synthetic dataset
with diverse delicate structures. Table 10 demonstrates
that performance on KITTI 2012/2015 and ETH3D consis-
tently improves with more datasets used for training. How-
ever, performance on Middlebury [13] deteriorates when
VKITTI2 samples are included. We argue that this is
due to distinct domain shifts in the additional data, weak-
ening generalization on Middlebury. Conversely, using
the CREStereo dataset for training improves generaliza-
tion on Middlebury. In summary, these results suggest that
SMoEStereo’s generalization ability is enhanced with in-
creased training data capacity.

5. SMoE vs. Multi Experts.

To demonstrate the effectiveness of SMoE’s dynamic se-
lection of optimal LoRA and Adapter experts, we compare
it with Multi Experts (Multi-E), which aggregates outputs
from all designed experts. As shown in Table 11, the SMoE
mechanism selectively activates sparse experts, achieving
a 1.25× speedup in training and a 1.12× speedup in in-
ference. Despite these gains, SMoE outperforms Multi-E
in cross-dataset performance, highlighting its effectiveness
in selecting the optimal expert for robust stereo matching.
This suggests that naively aggregating multiple experts may
not be optimal, as it can suppress informative features while
introducing noise.

Table 11. SMoE vs. Multi-E (All experts are involved in MoE).

Setting
Training Inference Number KITTI 2015 Middlebury ETH3D
Time (s) Time (s) of MoE EPE D1 All EPE Bad 2.0 EPE Bad 1.0

Multi-E 2.10 iter/s 4.68 iter/s 24 0.59 1.46 0.76 4.37 0.17 0.78

SMoE 2.63 iter/s 5.26 iter/s 14 0.60 1.51 0.71 4.12 0.15 0.63

6. Zero-shot Performance on Diverse Scenar-
ios.

We illustrate the predicted disparity maps across various
scenarios in Fig. 2 for a qualitative comparison. Compared
to previous state-of-the-art methods [15, 17], our method
shows exceptional generalization across diverse scenes, in-
cluding outdoor, indoor, and challenging weather condi-
tions. Additionally, our approach produces significantly
less noisy disparity maps compared to vanilla finetuning
methods for VFMs, showcasing enhanced robustness and
effectiveness. This improvement highlights our method’s
ability to maintain finer details and generate smoother re-
sults, particularly in zero-shot settings, as illustrated in Fig-
ure 3. The robust features produced by our SMoE fully
demonstrate the superiority of our approach in enhancing
the overall zero-shot performance of stereo matching out-
comes, ensuring fine detail preservation and smoothness
even in complex and varied environments.
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