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LiT: Delving into a Simple Linear Diffusion Transformer for Image Generation

Supplementary Material

A. Model Configuration001

We report the configurations of LiT variants in Tab. 1, which002
basically follow the hyper-parameters of DiT [23], except003
for using few heads. For class-conditional image genera-004
tion, we set 2/3/4/4 heads for linear attention used in LiT.005
For LiT-XL/2, used for text-to-image tasks, we use 2 heads006
for linear attention.007

Model Layers Hidden size Heads Patch size

LiT-S 12 384 2 2
LiT-B 12 768 3 2
LiT-L 24 1024 4 2
LiT-XL 28 1152 4 2
LiT-XL⋄ 28 1152 2 2

Table 1. Configuraions of LiT for class-conditional image gen-
eration and text-to-image generation (denoted by ⋄). Apart from
using few heads, we generally follow the DiT [23] setting.

B. Latency Analysis in Diffusion Transformer008

We conduct a component-wise latency analysis of the Dif-009
fusion Transformer, with results shown in Fig. 1. The010
analysis was performed using the DiT-B/4 [23] model on011
an NVIDIA A100 GPU. The results indicate that the self-012
attention module accounts for 42.6% of the total latency of013
a DiT block. We attribute the observed considerable latency014
proportion to the quadratic computational complexity of the015
self-attention.016

C. Detailed Latency and Theoretical GMACs017

We use one NVIDIA V100 GPU to evaluate the latency and018
theoretical GMACs of the DiT-S/B models with different019
numbers of heads. The task was to generate 256×256 res-020
olution images with a batch size of 8, following the experi-021
mental setup of Fig. 5 in the main paper (except for the GPU022
type), and the results are shown in Fig. 3.023

We observe that both the small and base models on the024
V100 GPU exhibit a phenomenon similar to that on the025
A100 GPU: as theoretical GMACs increased, practical la-026
tency does not follow the same trend and even descend (in027
the B/2 model). This finding supports the generalizability028
of the free lunch effect of linear attention.029

D. Detailed Results on Attention Head Similar-030

ities031

We take LiT-S/2 with 6 heads for visualization. Average co-032
sine similarity among the attention maps of different heads033
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Figure 1. Latency analysis of different components in DiT-
B/4 [23] with a batch size of 8 using NVIDIA A100 GPU. Latency
of the vanilla self-attention occupies about 42.6% of the back-
bone. Our LiT successfully replaces the heavy attention module
with simple linear attention, by using the proposed architectural
design and training guidelines.

Figure 2. Comparing training efficiency between our LiT and
DiT. LiT outperforms DiT (400K training steps) with only 100K
training steps for different model sizes.

is illustrated in Fig. 4. 034
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Figure 3. Free lunch in linear attention. Comparison of latency
and theoretical GMACs for linear attention with different number
of heads. We test the latency to generate 256× 256 resolution im-
ages using one NVIDIA V100 GPU with a batch size of 8. Results
of S/2 and B/2 model were averaged over 30 times. Results for the
case of the V100 GPU demonstrate a similar phenomenon to the
A100 GPU.

E. Detailed Results on Class-Conditional Im-035

age Generation036

Detailed results on Sec. 4. We provide detailed results037
for Tab. 1, Tab. 2, Tab. 3 and Tab. 4 in the main text in038
Tab. 2, Tab. 3, Tab. 4, and Tab. 5, respectively. In each039
table, we report results involving FID-50K [13] (without040
classifier-free guidance), Inception Score (IS) [32] and Pre-041
cision/Recall [17]. IS, and Precision/Recall show results042
similar to FID-50K. As a result, the conclusions drawn in043
Sec. 4 of the main paper apply not only to metrics evaluat-044
ing the distance between generated images and real images045
(e.g., FID-50K) but also to metrics reflecting the quality of046
the generated images themselves (e.g., IS).047

F. More Results on Text-to-Image Generation048

We provide more text-to-image results in Fig. 7 and Fig. 8.049
As shown, LiT can accurately generate 512px photo-050
realistic images in various styles, themes, and content,051
whether the human instructions are simple or complicated.052
These results demonstrate that LiT effectively learns useful053
knowledge from the teacher model while maintaining ex-054
ceptional computational efficiency, validating the effective-055
ness of our proposed cost-effective training strategy. Re-056
sults of the offline laptop development are shown in Fig. 5.057

G. Pseudo-code058

As presented in Alg. 1, we provide an example of the059
pseudo-code for the linear attention used in our LiT model060
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Figure 4. Redundancy in linear attention heads. Attention maps
of different heads of LiT-S/2 (6 heads) show high average cosine
similarity.

Figure 5. Offline deployment of on a Windows 11 laptop. LiT
runs swiftly on the edge, generating 1K resolution images.

for text-to-image generation for the laptop development. 061
We set the kernel size of the depthwise convolution to 5. 062

H. Full Related Work 063

Linear attention. As a computationally efficient alterna- 064
tive to self-attention, linear attention [16] reduces compu- 065
tational complexity from quadratic to linear and has been 066
proven effective in both visual understanding domain [1, 2, 067
9–11] and language domain [4, 27–29, 36]. EfficientViT [2] 068
introduces a multi-scale linear attention with hardware- 069
efficient operations to obtain a general vision backbone. 070
Flatten Transformer [10] introduces focused linear attention 071
to address the deficiencies in focus ability and feature di- 072
versity of linear attention, incorporating a focused function 073
and depthwise convolution (DWC). SLAB [9] simplifies fo- 074
cused linear attention by retaining only the DWC compo- 075
nent and introduces a progressive re-parameterized batch 076
normalization to adapt offline batch normalization [15] for 077
achieving low inference latency. These studies have been 078
validated on visual perception tasks. Meanwhile, our work 079
refines a linear attention module tailored for image genera- 080
tion tasks and identifies the free lunch of using few heads. 081
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Algorithm 1 Linear Attention in LiT, Pseudo-code

import torch
import torch.nn as nn

class LinearAttention(nn.Module):
def __init__(

self,
dim,
num_heads=8,
qkv_bias=False,
attn_drop=0.,
proj_drop=0.,
kernel_function=nn.ReLU,
kernel_size=5,
fp32_attention=True,
**block_kwargs,

):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}."

self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads

self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)

self.dwc = nn.Conv2d(in_channels=head_dim, out_channels=head_dim, kernel_size=kernel_size,
groups=head_dim, padding=kernel_size // 2)

self.kernel_function = kernel_function()
self.fp32_attention = fp32_attention

def forward(self, x, HW=None):
B, N, C = x.shape
new_N = N
if HW is None:

H = W = int(N ** 0.5)
else:

H, W = HW

q = self.q(x)
dtype = q.dtype

kv = self.kv(x).reshape(B, N, 2, C).permute(2, 0, 1, 3)
k, v = kv[0], kv[1]

q = self.kernel_function(q) + 1e-6
k = self.kernel_function(k) + 1e-6

q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3).to(dtype)
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3).to(dtype)
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3).to(dtype)

use_fp32_attention = getattr(self, ’fp32_attention’, False)
if use_fp32_attention:

q, k, v = q.float(), k.float(), v.float()

with torch.cuda.amp.autocast(enabled=not use_fp32_attention):
z = 1 / (q @ k.mean(dim=-2, keepdim=True).transpose(-2, -1) + 1e-6)
kv = (k.transpose(-2, -1) * (N ** -0.5)) @ (v * (N ** -0.5))
x = q @ kv * z

x = x.transpose(1, 2).reshape(B, N, C)
v = v.reshape(B * self.num_heads, H, W, -1).permute(0, 3, 1, 2)
x = x + self.dwc(v).reshape(B, C, N).permute(0, 2, 1)

x = x.type(torch.float16)

x = self.proj(x)
x = self.proj_drop(x)

return x

Efficient diffusion Transformer for image generation.082
Limited by the quadratic computational complexity of083
self-attention, recent studies focus on developing efficient084

Transformer-style architectures for diffusion models. For 085
example, DiM [33], ZigMa [14], and DiMSUM [25] ex- 086
plore implementing Mamba-based [6, 8] DiT-style [23] 087
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models. Diffusion-RMKV [7] studies RWKV-style [24]088
models for diffusion. Mediator [26] introduces an atten-089
tion mediator to obtain an efficient diffusion Transformer090
with linear complexity. DiG [41] replaces the self-attention091
in DiT with gated linear attention to speed up training.092
LinFusion [21] and Sana [35] apply linear attention to U-093
Net-based [30] and Transformer-based [34] diffusion mod-094
els, respectively, and train these models from scratch to095
generate high-quality images based on user instructions.096
Other studies [19, 20] explore efficient diffusion mod-097
els through perspectives of low-bit quantization [12], fea-098
ture map reusing [18, 22], and lightweight architecture de-099
sign [40]. Differently, our work not only refines the design100
of linear attention but also introduces cost-effective training101
strategies, including weight inheritance and a novel hybrid102
diffusion distillation approach.103

Advanced training method for diffusion models. Some104
studies explores improved training strategies to enhance the105
optimization of diffusion models or achieve more efficient106
models. For example, CAN [3] introduces a condition-107
aware weight generation module to the diffusion Trans-108
former, and demonstrate the technique can be further109
equipped with EffcientViT [2] to achieve both effectiveness110
and efficiency. REPA [39] proposes aligning the intermedi-111
ate features of the denoising model with those extracted by112
a pre-trained visual encoder during the training of diffusion113
models. Some studies [31, 37, 38] explore distillation tech-114
niques to reduce the sampling steps of the diffusion model.115
Unlike the goal of reducing sampling steps, our proposed116
hybrid knowledge distillation focuses on an architectural117
perspective, exploring how a lightweight student model can118
learn from a computationally intensive teacher model.119
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DiT Attention Resolution Batch Size Training Steps FID-50K (↓) IS (↑) Precision (↑) Recall (↑)
S/2 softmax 256 256 400K 68.40 -
S/2 ReLU linear 256 256 400K 88.46 15.11 0.29 0.45
S/2 Simplified linear (ReLU) 256 256 400K 63.66 22.16 0.38 0.58
S/2 focused linear (ReLU) 256 256 400K 63.05 22.49 0.39 0.58
S/2 focused linear (GELU) 256 256 400K 70.83 19.41 0.36 0.54
B/2 softmax 256 256 400K 43.47 -
B/2 ReLU linear 256 256 400K 56.92 25.80 0.42 0.59
B/2 Simplified linear (ReLU) 256 256 400K 42.11 34.60 0.48 0.63
B/2 focused linear (ReLU) 256 256 400K 40.58 35.98 0.50 0.63
B/2 focused linear (GELU) 256 256 400K 58.86 24.23 0.42 0.57

Table 2. Detailed results of Tab. 1 in the main paper. We report FID-50K [13] (without classifier-free guidance), Inception Score [32]
and Precision/Recall [17] metrics.

DiT Head Resolution Batch Size Training Steps FID-50K (↓) IS (↑) Precision (↑) Recall (↑)
S/2 1 256 256 400K 64.42 21.54 0.380 0.574
S/2 2 256 256 400K 63.24 22.07 0.385 0.570
S/2 3 256 256 400K 63.21 22.08 0.386 0.583
S/2 6 256 256 400K 63.66 22.16 0.383 0.580
S/2 48 256 256 400K 78.76 17.46 0.322 0.482
S/2 96 256 256 400K 116.00 11.49 0.224 0.261
B/2 1 256 256 400K 41.77 34.78 0.487 0.631
B/2 2 256 256 400K 41.39 35.59 0.494 0.631
B/2 3 256 256 400K 40.86 35.79 0.497 0.629
B/2 12 256 256 400K 42.11 34.60 0.484 0.631
B/2 96 256 256 400K 68.30 20.45 0.375 0.531
B/2 192 256 256 400K 112.39 12.07 0.240 0.282
L/2 1 256 256 400K 24.46 57.36 0.600 0.637
L/2 2 256 256 400K 24.37 57.02 0.599 0.622
L/2 4 256 256 400K 24.04 59.02 0.597 0.636
L/2 16 256 256 400K 25.25 54.67 0.587 0.632
XL/2 1 256 256 400K 21.13 65.06 0.619 0.632
XL/2 2 256 256 400K 20.66 65.39 0.624 0.636
XL/2 4 256 256 400K 20.82 65.52 0.619 0.632
XL/2 16 256 256 400K 21.69 63.06 0.617 0.628

Table 3. Detailed results of Tab. 2 in the main paper. We report FID-50K [13] (without classifier-free guidance), Inception Score [32]
and Precision/Recall [17] metrics. DiTs [23] setting.
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Load Iterations FFN Modulation Layer Attention FID-50K (↓) IS (↑) Precision (↑) Recall (↑)
model 400K ✓ ✓ ✗ 56.07 25.62 0.418 0.608
ema 400K ✓ ✓ ✗ 56.07 25.61 0.416 0.601
model 200K ✓ ✓ ✗ 57.84 24.72 0.408 0.600
model 300K ✓ ✓ ✗ 56.95 25.04 0.414 0.608
model 400K ✓ ✓ ✗ 56.07 25.62 0.418 0.608
model 600K ✓ ✓ ✗ 54.80 26.65 0.424 0.613
model 800K ✓ ✓ ✗ 53.83 27.16 0.425 0.614
model 600K ✓ ✓ Q, K, V 55.29 26.09 0.419 0.619
model 600K ✓ ✓ K, V 55.07 26.38 0.422 0.609
model 600K ✓ ✓ V 54.93 26.44 0.427 0.612
model 600K ✓ ✓ Q 54.82 26.72 0.423 0.605
model 600K ✓ ✓ O 54.84 26.33 0.425 0.607

Table 4. Detailed results of Tab. 3 in the main paper. We report FID-50K [13] (without classifier-free guidance), Inception Score [32]
and Precision/Recall [17] metrics.

Model Size Iterations Teacher λ1 λ2 Training Steps FID-50K (↓) IS (↑) Precision (↑) Recall (↑)
S/2 800K DiT-S/2 0.1 0.0 400K 55.11 26.28 0.419 0.614
S/2 800K DiT-XL/2 0.0 0.0 400K 53.83 27.16 0.425 0.614
S/2 800K DiT-XL/2 0.1 0.0 400K 53.05 27.43 0.431 0.609
S/2 800K DiT-XL/2 0.05 0.0 400K 53.41 27.26 0.427 0.610
S/2 800K DiT-XL/2 0.5 0.0 400K 51.13 28.89 0.438 0.616
S/2 800K DiT-XL/2 0.1 0.05 400K 52.76 27.70 0.431 0.620
S/2 800K DiT-XL/2 0.0 0.05 400K 53.49 27.26 0.429 0.609
S/2 800K DiT-XL/2 0.05 0.05 400K 53.14 27.46 0.431 0.609
S/2 800K DiT-XL/2 0.5 0.05 400K 50.79 29.17 0.443 0.618

Table 5. Detailed results of Tab. 4 in the main paper. We report FID-50K [13] (without classifier-free guidance), Inception Score [32]
and Precision/Recall [17] metrics.
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A photo of beautiful mountain with realistic sunset 
and blue lake, highly detailed, masterpiece

anthropomorphic profile of the white snow owl Crystal 
priestess , art deco painting, pretty and expressive eyes, 
ornate costume, mythical, ethereal, intricate, elaborate, 

hyperrealism, hyper detailed, 3D, 8K

a handsome 24 years old boy in the middle with sky color 
background wearing eye glasses, it's super detailed with 
anime style, it's a portrait with delicated eyes and nice 

looking face

Steampunk makeup, in the style of vray tracing, colorful 
impasto, uhd image, indonesian art, fine feather details 

with bright red and yellow and green and pink and orange 
colours, intricate patterns and details, dark cyan and 
amber makeup. Rich colourful plumes. Victorian style.

An illustration of a human heart made of translucent 
glass, standing on a pedestal amidst a stormy sea. Rays 

of sunlight pierce the clouds, illuminating the heart, 
revealing a tiny universe within.

A dog that has been meditating all the time

Figure 6. 512px Generated samples of LiT following user instructions. Converted from PixArt-Σ [5], LiT adopts the same macro-
and micro-level architecture, maintaining alignment with the PixArt-Σ framework while elegantly replacing all self-attention with efficient
linear attention. While being simple and efficient, LiT can generate exceptional high-resolution images following user instructions.
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A alpaca made of colorful building blocks, cyberpunk A blue jay standing on a large basket of rainbow 
macarons.

A car made out of vegetables.

A cute orange kitten sliding down an aqua slide. happy 
excited. 16mm lens in front. we see his excitement and 
scared in the eye. vibrant colors. water splashing on 

the lens

A realistic landscape shot of the Northern Lights 
dancing over a snowy mountain range in Iceland.

portrait photo of a girl, photograph, highly detailed face, 
depth of field

Figure 7. 512px Generated samples of LiT following user instructions. Converted from PixArt-Σ [5], LiT adopts the same macro-
and micro-level architecture, maintaining alignment with the PixArt-Σ framework while elegantly replacing all self-attention with efficient
linear attention. While being simple and efficient, LiT can generate exceptional high-resolution images following user instructions.
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An extreme close-up of an gray-haired man with a beard in his 60s, he 
is deep in thought pondering the history of the universe as he sits at 
a cafe in Paris, his eyes focus on people offscreen as they walk as he 
sits mostly motionless, he is dressed in a wool coat suit coat with a 
button-down shirt , he wears a brown beret and glasses and has a 
very professorial appearance, and the end he offers a subtle closed-
mouth smile as if he found the answer to the mystery of life, the 
lighting is very cinematic with the golden light and the Parisian 

streets and city in the background, depth of field, cinematic 35mm 
film.

Astronaut in a jungle, cold color palette, muted 
colors, detailed, 8k

dogFrog, in forest, colorful, no watermark, no signature, 
in forest, 8k

Game-Art - An island with different geographical 
properties and multiple small cities floating in 

space

Pirate ship trapped in a cosmic maelstrom nebula, 
rendered in cosmic beach whirlpool engine, 

volumetric lighting, spectacular, ambient lights, 
light pollution, cinematic atmosphere, art nouveau 

style, illustration art artwork by SenseiJaye, 
intricate detail.

Figure 8. 512px Generated samples of LiT following user instructions. Converted from PixArt-Σ [5], LiT adopts the same macro-
and micro-level architecture, maintaining alignment with the PixArt-Σ framework while elegantly replacing all self-attention with efficient
linear attention. While being simple and efficient, LiT can generate exceptional high-resolution images following user instructions.
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