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1. More for Related Work

1.1. Intrinsic Decomposition
Intrinsic decomposition aims to separate an image into re-
flectance (albedo), shading and sometimes additional com-
ponents. Traditional intrinsic decomposition methods rely
on different assumptions, leading to three main models:
grayscale intrinsic models, RGB intrinsic models, and
residual models. Grayscale intrinsic models were widely
used in early works, with optimization-based approaches
such as [2] and various data-driven methods [19] estimating
reflectance and shading under a single-channel assumption.
RGB intrinsic models address the limitations of grayscale
models by explicitly estimating diffuse color and shading
variations, leading to improved accuracy in non-uniform
lighting conditions. However, both grayscale and RGB
models rely on the Lambertian assumption, making them
inadequate for handling specular reflections. To overcome
this, residual intrinsic models [6, 27, 36], were introduced,
decomposing an image into albedo A, shading S, and a
residual term R to better account for specular effects. Sev-
eral works have explored this decomposition for improved
reflectance modeling. Despite advancements, most intrinsic
decomposition and inverse rendering approaches are evalu-
ated on simple indoor datasets due to data limitations. Ex-
panding these methods to complex outdoor scenes remains
an ongoing challenge, particularly under diverse illumina-
tion conditions.

1.2. Inverse Rendering
Inverse rendering aims to recover intrinsic scene properties
such as albedo, shading, and material properties from im-
ages, enabling applications like relighting and novel view
synthesis. While significant progress has been made, most
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existing methods and evaluations remain object-centric,
with limited exploration in large-scale, complex outdoor en-
vironments.

Early works in inverse rendering relied on physics-based
models and optimization techniques to estimate reflectance
and shading from single images [1, 22]. With the rise
of neural representations, NeRF-based approaches have
been developed to jointly learn scene geometry and ap-
pearance under varying lighting conditions. NeRV [29]
and NeRD [3] incorporated reflectance decomposition into
NeRF, but their evaluations were limited to controlled,
object-centric datasets. More recent works, such as
PhySG [39]and InvRender [41], extended inverse render-
ing to handle non-Lambertian surfaces and indirect illumi-
nation, yet their experiments remained focused on synthetic
or small-scale real-world objects.

Gaussian-based representations have also been ex-
plored for inverse rendering. GS-IR [20] and Re-
lit3DGS [13]extended 3D Gaussian Splatting for relight-
ing by decomposing scene appearance into intrinsic com-
ponents. However, these methods are still constrained to
object-level reconstructions and have not been tested on
large-scale outdoor environments.

Despite these advancements, inverse rendering has yet
to be widely explored in large, real-world scenes. Existing
datasets are predominantly object-centric (e.g., DTU [14],
NeRF Synthetic [24], OmniObject3D [32] , limiting the
generalization of these methods to urban-scale outdoor en-
vironments. The lack of benchmarks with complex outdoor
lighting and diverse materials remains a significant barrier
to extending inverse rendering beyond object-level scenes.

1.3. Outdoor Scene Reconstruction

Outdoor scene reconstruction has been widely studied, with
Neural Radiance Fields (NeRF) [24] and 3D Gaussian
Splatting (3DGS) [15] enabling high-quality scene repre-
sentation. Methods like CityNeRF [31] and CityGaus-

1



sian [21] further enhance large-scale urban reconstruction.
However, real-world urban-scale data collection inherently
involves complex lighting variations due to weather, time
of day, and environmental factors. The presence of in-
consistent illumination poses significant challenges for out-
door scene reconstruction. To address illumination varia-
tions, recent works integrate appearance modeling. NeRF-
W [23] first introduced latent embeddings for variational
lighting appearance. Ha-NeRF [7], CR-NeRF [34] an K-
Planes [12] leveraged CNN-based, cross-ray paradigm, and
feature grids to modeling different lighting effects respec-
tively. NeuralRecon [30] focused on geometry reconstruc-
tion under uncontrolled conditions. More recently, efforts
to extend 3DGS with appearance modeling have merged,
including wild-gaussians [33], Wild-GS [16], Gaussian-
wild [38], and SWAG [10]. While these methods improve
robustness on datasets like Phototourism [28], reconstruct-
ing urban scenes under extreme multi-illumination condi-
tions remains challenging due to the lack of standardized
datasets and uniform benchmarks.

2. Details for Camera Generation

To generate camera views for our urban scenes, we design
two types of view sampling methods, namely uniform view
sampling and adaptive sampling. And we display the coarse
point cloud reconstructed by COLMAP given our camera
intrinsics and extrinsics, as shown in Fig. 1.

2.1. Uniform View Sampling
For circular views, we apply two tracking constraints to the
cameras and use a frame queue to record their poses. The
first constraint is based on a Bezier circle path for tracking.
We place 3 Bezier circles at the center of different regions,
with their radius set according to the length and width of
the block. The heights of the Bezier circles are determined
by the maximum object height in the region, ensuring com-
prehensive views from both a top-down and bottom-up per-
spective. The second constraint is based on the standard
object tracking. We place an empty object at the center of
the scene, allowing the camera to maintain the correct pose
while following the Bezier curve. The view density of the
curve is set adaptively based on the scale of the block. For
grid views, we compute the 2D bounding box of each block
and divide this bounding box into grids of varyingg reso-
lutions based on its scale hierarchy. Within each grid, we
place four cameras, with pitch angles ranging from 20 to 45
degrees and yaw angles of [0, 90, 180, 270] degree, respec-
tively.

2.2. Adaptive View Sampling
For street views, cameras are placed along the streets within
each block at 0.5m intervals. To enhance the details of

the streets and surrounding buildings, we randomly gener-
ate cameras oriented in four directions, with heights sam-
pled within the ranges of [0.5m, 0.6m] and [0.9m, 1.3m],
and pitch angles in the range of [45, 60] degree. For aerial
views, note that the uniform view sampling described in the
previous paragraph struggles to fully capture the complex
occlusion relationships within densely clustered buildings.
Motivated by this, we aim to adaptively position cameras
within densely clustered buildings. Specifically, we con-
struct an adjacency lookup table in recursion based on the
heights and relative positions of all buildings within a block.
This lookup table enables us to generate a simplified spa-
tial representation of the block and efficiently identify adja-
cent structures in four directions. For buildings located next
to streets, we sample street-facing views at an adjustable
height above the building. For buildings positioned adja-
cent to one another, we generate camera poses based on rel-
ative height relationships, ensuring finer-grained coverage
of intra-block architectural structures.

3. Details for LightCity
Our LightCity dataset contains two parts, namely the
LightCity reconstruction dataset and the LightCity intrinsic
dataset. The dataset for urban scene reconstruction divided
into regions based on scene clusters, as shown in Fig. 3. To
further illustrate our dataset’s diverse diffuse color, we also
visualize HSV of MatrixCity dataset in Fig. 2.

3.1. LightCity Reconstruction Dataset
The LightCity reconstruction dataset is mainly estab-
lished for task of urban scene reconstruction under multi-
illuminations. Under the hierarchical-division of the city
assets, we render multi-view images by uniform circle,
uniform grid and adaptive sampling. Under the same
viewpoints, we also construct a dataset under single-
illumination.

3.2. LightCity Intrinsic Dataset
The LightCity intrinsic dataset is collected for enhancing
and benchmarking outdoor intrinsic image decomposition
task. To emphasize the challenge of multi-illuminations in-
troduced in the prediction of albedo and shading, we ran-
domly choose two sky environments, randomly rotate each
fourth, randomly set the ambient lighting intensity for each
view. This type of strategy enables use to simulate the com-
plex lighting interactions within the scene across a day. For
each view, we have 8 different lighted images.

3.3. Extension of LightCity Dataset
Since LightCity primarily targets the impact of diverse
lighting on reconstruction and decomposition, we further
include a small subset of renderings under extreme weather
conditions such as fog, rain and snow (see Fig. 4). This



(a) Uniform Circle (b) Uniform Grid (c) Adaptive Sampling

Figure 1. The COLMAP coarse point clouds of block F2 under our three types of camera views sampling methods. From left to right
represents uniform circle, uniform grid, and adaptive sampling. Our adaptive sampling has the most detailed and uniform point clouds,
while the other two cluster on top part of the target scene.

Figure 2. Visualization of HSV distribution of MatrixCity albedo
images.

enhancement aims to support further studies on weather-
aware modeling. In addition, to enrich scene diversity, we
also provide an extension as shown in Fig. 5 based on city
assets built by the City Generator, another Blender add-on,
which covers a broader range of urban layouts.

4. More Results For Intrinsic Image Decompo-
sition

4.1. Baseline Details
We display a brief summary of methods we used for evalu-
ation of Intrinsic Image Decomposition.
DPF. [8] DPF (Dense Prediction Fields) is a novel approach
for dense prediction tasks using weak point-level supervi-
sion. It leverages point-level supervision for dense predic-
tion by predicting values at queried coordinates, inspired by
implicit representations. It enables high-resolution outputs
and performs well in semantic parsing and intrinsic image
decomposition.
dmp. [17] DMP leverages pre-trained text-to-image (T2I)
diffusion models as priors for dense prediction tasks. It re-

Figure 3. Different hierarchies of our LightCity reconstruction
dataset, divided by different clusters of the scene. The purple
rectangle represents a father node, block A, of the dataset, which
contains images of the whole scene. According to different block
size, block A is further split into 5 hierarchies of different scales,
namely B,C,D,E, F . In total, we have 13 blocks. And we per-
form urban scene reconstruction on the second smallest E,F hi-
erarchies.

formulates the diffusion process with interpolations to cre-
ate a deterministic mapping between input images and pre-
dictions. Using low-rank adaptation for fine-tuning, DMP
achieves strong generalizability across tasks like 3D prop-
erty estimation and intrinsic image decomposition.
IntrinsicAny. [9] IntrinsicAnything addresses the chal-
lenge of recovering object materials from posed images un-
der unknown lighting. Instead of relying solely on differ-
entiable rendering, it introduces a generative material prior
using diffusion models for albedo and specular components.
This helps resolve ambiguities in inverse rendering. A
coarse-to-fine training strategy further enforces multi-view



Figure 4. More examples on condition changing of LightCity.

Expansion of LightCity on  more city assets

Figure 5. More examples on expansion of LightCity built by the City Generator.

consistency, leading to more accurate material recovery.
CDID. [5] CDID tackles intrinsic image decomposition by
separating an image into diffuse albedo, colorful diffuse
shading, and specular residuals. Unlike prior methods as-
suming single-color illumination and a Lambertian world,
it progressively removes these constraints, enabling more
realistic and flexible illumination-aware editing.
PIENet. [11] PIE-Net is a deep learning method for detect-
ing feature edges in 3D point clouds by representing them
as parametric curves (lines, circles, B-splines). It follows a
region proposal approach, first identifying edge and corner
points, then ranking them for selection.

4.2. Detailed Dataset for Evaluations
We use multiple indoor and outdoor datasets for a through
evaluation on our mixed-finetuning mechanism. And we
provide a brief summary of all datasets we used.
Hypersim. Hypersim is a large-scale synthetic dataset fea-
turing photorealistic indoor scenes with multi-view RGB
images, depth maps, surface normals, and intrinsic decom-
position (albedo, shading). It serves as a benchmark for
tasks like indoor intrinsic decomposition, depth estimation,
and inverse rendering.
IIW. IIW is a real-world dataset for intrinsic image de-
composition, containing over 5,000 images with human-
annotated pairwise reflectance comparisons. It provides a
diverse set of unconstrained scenes, making it a key bench-
mark for evaluating intrinsic decomposition methods.
EDEN. EDEN is a multimodal synthetic dataset designed
for nature-oriented applications, such as agriculture and
gardening. It contains over 300K images from 100+ gar-
den models, annotated with various vision modalities, in-
cluding semantic segmentation, depth, surface normals, in-

trinsic colors, and optical flow. The dataset can be used for
semantic segmentation and monocular depth prediction.

4.3. Indoor Scenes
We display the evaluation results of image intrinsic decom-
position of indoor scenes of Hypersim and IIW in Tab. 2 and
Tab. 1, respectively. For Hypersim dataset, the DNN-based
CDID has the best averaged performance on si-PSNR, si-
MSE and si-LMSE for albedo decomposition. However,
the diffusion-based DMP tends have better visual fidelity
with SSIM for albedo higher than 0.53, shading higher than
0.62. It aligns with the high quality of generated images
of diffusion models. Besides, the DMP mixfine-tuned with
LightCity tends to get higher si-PSNR and LPIPS for shad-
ing estimation. This findings aligns with previous in out-
door datasets. For IIW dataset, the DMP fine-tuned on Hy-
persim has the best WHDR score, there is a little quality
drop for DMP mixfine-tuned with LightCity, we attribute
this to the domain gap between the two datasets, which
brings chanllenge for diffusion models to learn. However,
DPF mixfine-tuned with LightCity is 5% lower on WHDR
metrics, exhibiting improved performance.

4.4. Sim-to-real Discussion
Synthetic data plays a vital role in computer and robotic
vision, particularly for tasks like scene understanding and
inverse rendering. It allows precise control over lighting,
materials, and geometry through engines such as Blender or
Unreal. However, low-quality synthetic datasets can suffer
from a large sim-to-real gap, negatively impacting general-
ization to real-world images. To mitigate this, we have used
the best open-sourced rendering engine, Blender Cycles, for
photo-realism. This high realism reduces the domain gap



Table 1. Performance of alebdo estimation on IIW datasets. The
first , second and third values are highlighted.

IIW-Indoor
Method Dtrain WHDR / %

DNN Based

PIE-Net / 32.77

DPF
H 43.14

H+L 38.502
Intrinsic 2024 objects 21.33

Diffusion Based
DMP

H 19.08
H+L 20.37

IntrinsicAnything / 27.08

and improves transferability, similar to how datasets like
Hypersim [26] leveraged PBR to boost real-world perfor-
mance.

Input RGB LightCity MatrixCity Hypersim

BigTime_v1 Dataset  

Figure 6. Albedo Decomposed from BigTime v1 dataset.

To further evaluate the real-world generalization, we
leverage the strong generalization ability of generative mod-
els. Recent studies have shown that diffusion models exhibit
impressive generalization across domains, including tasks
like normal prediction (e.g., StableNormal [35]). Build-
ing on DMP, a diffusion-based model, we assess intrin-
sic decomposition performance of both indoor and outdoor
real-world scenes. For indoor evaluation, we report results
on the IIW dataset(Sec. 4.3). For outdoor scenes, we use
BigTime v1 and the Waymo Open dataset. BigTime v1
captures outdoor environments under varying illumination
throughout a day, while the Waymo Open dataset offers di-
verse urban scenes collected under different lighting and
weather conditions by Waymo autonomous vehicles. For
albedo consistency as shown in Fig. 6, DMP mix-finetuned
with LightCity presents lowest average variance of 0.015,
while mix-finetuned with MatrixCity-mix and purely Hy-
persim have higher variance of 0.036 and 0.042, respec-

tively. DMP mix-finetuned with LightCity also generalizes
well to real-world urban scenes, as shown in Fig. 7.

Besides, to further minimize the sim-to-real gap, gen-
erative models can also be treated as domain trans-
fer models for sim-to-real transfer. Established works
have demonstrated the efficacy of such approaches in
bridging synthetic-real discrepancies [42]. Leveraging
diffusion-based image-to-image pipelines such as img2img-
turbo [25] and InstructPix2Pix [4] offers a promising future
direction to make synthetic datasets more applicable to real-
world scenarios.

5. More Results for Multi-image Inverse Ren-
dering

5.1. Baseline Details
We present a short description for the baseline methods
(NeRF-OSR and GS-IR) for our inverse rendering.
NeRF-OSR. is the first approach to learning a neural
representation that explicitly decomposes scene geometry,
diffuse albedo, and shadows from multi-view and multi-
illumination input images, thereby enabling more flexible
scene editting.
GS-IR. first extends 3DGS for inverse rendering, leverag-
ing a PBR framework to jointly reconstruct scene geometry,
material properties, and unknown natural illumination from
multi-view captured images at both object-level and scene-
level tasks.

5.2. Novel View Synthesisi and Geometry Quality
We also provide geometry ground-truth for multi-view in-
verse rendering. And evaluate the geometry quality of both
used baselines. As shown in Tab. 4, GS-IR performs better
in urban scene inverse rendering than NeRF-based NeRF-
OSR both in novel view synthesis and geometry reconstruc-
tion.

5.3. Material Estimation
As an important component in PBR-based inverse render-
ing, GS-IR also optimizes per-Gaussian metallic and rough-
ness attribute to produce photo-realistic lighting effect. So
we evaluate the decomposed material properties with our
ground-truth properties, there are still large step to improve
accuracy of material estimation in urban inverse rendering.

6. More Results for Multi-illumination Out-
door Reconstruction

6.1. Baseline Details
We present a short description for the baseline methods
(NeRF-W, wild-gaussians and Gaussian-wild) for our out-
door reconstruction under multi-illumination.



Table 2. Single image intrinsic decomposition results under Hypersim Indoor dataset. The first , second and third values are high-
lighted.

Hypersim-Indoor

Method Dtrain
Albedo Shading

si-PSNR↑ SSIM↑ LPIPS↓ si-MSE↓ si-LMSE↓ si-PSNR↑ SSIM↑ LPIPS↓ si-MSE↓ si-LMSE↓

DNN

PIE-Net Outdoor 12.55 0.449 0.479 0.101 0.095 14.81 0.513 0.454 0.025 0.024

DPF
H 15.43 0.445 0.576 0.033 0.031 14.59 0.570 0.531 0.070 0.063

H+L 13.48 0.403 0.599 0.089 0.082 14.85 0.520 0.570 0.037 0.034
CDID E+Indoor.etc 16.70 0.487 0.372 0.023 0.020 14.85 0.190 0.515 0.011 0.010

Diffusion
DMP

H 16.48 0.534 0.369 0.036 0.034 15.59 0.624 0.353 0.046 0.043
H+L 16.56 0.531 0.371 0.033 0.031 15.73 0.621 0.352 0.043 0.040

IntriAny Objects 12.33 0.407 0.510 0.195 0.182 /

Input RGB Inferred Albedo Waymo Open Dataset

Figure 7. Albedo Decomposed from Waymo Open dataset.

NeRF-W. extends the implicit NeRF to unconstrained
multi-illumination reconstruction by introducing a per-
image learned low-dimensional latent appearance embed-
dings as shared MLP conditions utilizing GLO, thus disen-
tangling scene geometry from illumination inconsistencies.
wild-gaussians. adapts the explicit 3D Gaussian Splatting
(3DGS) representation for real-world scene reconstruction
under varying lighting conditions. It incorporates an MLP-
based appearance modeling module with affine color map-
ping to capture image-dependent Gaussian colors while pre-
serving rendering efficiency.
Gaussian-wild. further enhances local high-frequency
changes of the scene by separating each Gaussian’s appear-
ance into intrinsic and dynamic features based on 3DGS, to
better capture fine-grained scene details while adapting to
varying lighting conditions.
NexusSplats. utilizes an neural network to represent
image-specific global lighting conditions and Gaussian-
specific localized response to global lighting variations,
to effectively capture complex illumination changes across
scenes.

6.2. Novel View Synthesis

To provide a baseline for our LightCity reconstruction
dataset. We also train Gaussian-wild (GS-W) under
the single-illumination dataset. The result is shown in
Tab. 3. Compared with that trained under multi-illumination

dataset, the performance dropped, which further indicating
the strong influence of multi-illumination on performance
of urban reconstructions.

In previous sections, we display the visualization eval-
uation results under test set of multi-illumination dataset.
We also display the results under the test set of single-
illumination dataset in Fig. 9. Compared with 3DGS,
methods for modeling appearance embedding has a qual-
ity degradation. Although, NeRF-W is able to restore the
shadow of the image (col1), it’s performance under other
unseen views remain worse. GS-W tends to restore a more
clear structure of the never-seen input GT, but there are
floaters in some part. This further illustrate the challenge
on our multi-illumination reconstruction dataset.

We also perform a deep analysis of the performane be-
tween the best GS-W and NeRF-W, as visualized in fig. 8.
The first row illustrates blurred detail of GS-W, floaters cov-
ering the building leading to visual artifacts. The second
row illustrates blurred detail of NeRF-W, which tends to
blur the detail of complex scenes.

6.3. Geometry Quality

For thoroughly evaluate the reconstruction geometry of the
LightCity dataset, we render the normal map of all used
methods under multi-illumination conditions. The error
metrics are displayed in Tab. 6. Across all blocks, Gaussian-
wild has the lowest MeaAE and MedAE, indicating its prior



Table 3. Performance of novel view synthesis of Gaussian-Wild
trained under single-illumination dataset for block F2

F2 Gaussian-wild
PSNR 28.74
SSIM 0.878
LPIPS 0.174

Gaussian-wild NeRF-W

Figure 8. Comparison of novel view synthesis under multi-
illumination between Gaussian-wild and Nerf-W.

Table 4. Performance of novel view synthesis for multi-view in-
verse rendering.

Datasets
Methods Metrics F2 F3 E1 E2

NeRF-OSR

PSNR 17.35 20.15 21.11 20.95
SSIM 0.562 0.600 0.622 0.597
LPIPS 0.461 0.413 0.400 0.438
MeaAE 32.81 31.39 30.96 33.98

GS-IR

PSNR 26.35 27.26 27.29 26.76
SSIM 0.862 0.90 0.858 0.861
LPIPS 0.233 0.186 0.196 0.200
MeaAE 28.07 23.60 27.73 28.78

Table 5. Performance of material estimation for multi-view inverse
rendering.

Datasets Metrics GS-IR

A2 metallic mse 0.1168
roughness mse 0.2643

A3 metallic mse 0.1813
roughness mse 0.2964

B1 metallic mse 0.2888
roughness mse 0.2833

B2 metallic mse 0.2599
roughness mse 0.2466

geometry reconstruction quality compared with other meth-
ods. However, under the constraint of multi-illumination,
those methods presents a quality decay compared with the
origin 3DGS. Besides, we presents the normal map of dif-
ferent methods in fig. 12. Although Gaussian-wild has the
highest normal accuracy, it tends to be blurred in some
flat areas, this may due to the extra floaters introduced by
multi-illumination input. However, NeRF-W has a rela-
tively sharp normal except for some roughness. This might
be attributed to its discrete sampling of rays. Another two
3DGS-based methods, i.e., wild-gaussian and NexusSplats,
can hardly reconstruct normals of the scene, with a wide
area of Gaussian surfels covering the screen space (column
3).

Besides, we also investigate the consistency of normal
between different views. As illustrated in Fig. 11, NeRF-W
tends to reconstruct different normal maps between differ-
ent views of the same scene, exhibiting strong inconsisten-
cies. This problem is not found for GS-based methods since
they disentangle apperance and location of each Gaussian.

7. More Results on Relighting

Relighting is a vital and real-world task in computer vi-
sion, enabliing applications such as content editing, lighting
transfer and scene manipulation. In our multi-illumination
reconstruction experiments, we perform 3D-based relight-
ing by optimizing the reconstructed representation under
test lighting conditions. Visual examples are shown in right
of Fig. 10. In addition to 3D-driven methods like NeRF-
OSR, we also evaluate image-based relighting techniques-
single-image models that directly manipulate input images
to match target lighting. We evaluated three models: IC-
Light [40], Self-OSR [37] and ColorTransfer [18]. As
shown in left of Fig. 10, IC-Light struggled to relight
complex outdoor scenes while Self-OSR and ColorTrans-
fer showed only limited performance. These results indi-
cate that current image-based relighting methods general-
ize poorly to outdoor urban scenes. Thus, LightCity offers
promising potential to support future work in image-based
relighting for outdoor environments.
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