
MOERL: When Mixture-of-Experts Meet Reinforcement Learning for Adverse
Weather Image Restoration

Supplementary Material

Overview
In this document, we first provide more details of the

Transformer layer. Then we conduct an additional abla-
tion study to evaluate the effectiveness of the proposed
MOE layer. Finally, we provide more visual comparisons
to demonstrate our method’s qualitative performance.

1. More details of Transformer layer
The MOE block combines a MOE layer and multiple Trans-
former units [8]. Each Transformer unit consists of a multi-
dconv head transposed attention (MDTA) mechanism and
a gated-dconv feed-forward network (GDFN). MDTA per-
forms self-attention along the channel dimension, reducing
computational complexity while preserving feature effec-
tiveness. Given input features X ∈ RC×H×W , layer nor-
malization is applied, followed by 1 × 1 and 3 × 3 depth-
wise convolutions to generate the Query (Q), Key (K), and
Value (V). These tensors compute a channel-wise attention
matrix to enhance feature interaction. This process can be
expressed as

Att(Q̂, K̂, V̂) = softmax

(
Q̂K̂⊤

α

)
V̂,

X̂ = W1×1 Att(Q̂, K̂, V̂) +X,

(1)

where X̂ denotes the output features. GDFN adopts a gat-
ing mechanism to propagate useful information selectively.
Specifically, given input X, convolutions and element-wise
operations controlled by a GELU activation function ϕ(·)
refine the feature representation. The process of GDFN is
shown as

Gate = ϕ
(
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)
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2
1×1(LN(X))),

X̂ = W1×1Gate(X) +X,
(2)

where LN is the normalization, X̂ ∈ RC×H×W represents
the output features, Gate(.) refers to the gated mechanism.
W1×1(.) and W3×3(.) denote 1 × 1 convolution and 3 × 3
depth-wise convolution. ⊙ is the element-wise multiplica-
tion operation. Together, MDTA and GDFN enable effi-
cient feature extraction and transformation, ensuring robust
restoration performance in adverse weather conditions.

2. Additional Ablation Study
Table 1 presents the results of an ablation study on the num-
ber of spatial and channel experts in the MOE layer, high-

Table 1. Ablation study settings. The MACs of each model is
measured on 256× 256 image.

Models Spatial experts Channel experts PSNR/SSIM Params. FLOPs

Variant1 4 4 32.65/0.9427 12.62M 68.58G
Variant2 6 6 32.76/0.9428 12.78M 69.57G
Variant3 8 8 32.78/0.9430 12.94M 70.58G

Ours 2 4 32.70/0.9428 12.50M 68.35G

lighting the trade-off between performance and computa-
tional efficiency. Variant1, with 4 spatial and 4 channel
experts, achieves a PSNR of 32.65 and an SSIM of 0.9427,
using 12.62M parameters and 68.58G FLOPs. Increasing
the experts to 6 each in Variant2 improves performance
slightly to a PSNR of 32.76 and an SSIM of 0.9428, with
a moderate increase in complexity (12.78M parameters and
69.57G FLOPs). Variant3, with 8 experts of each type,
achieves the best performance (32.78 PSNR, 0.9430 SSIM)
but incurs the highest computational cost (12.94M param-
eters and 70.58G FLOPs). Our chosen configuration, with
2 spatial experts and 4 channel experts, strikes the best bal-
ance, achieving a PSNR of 32.70 and an SSIM of 0.9428
while maintaining the lowest parameter count (12.50M)
and computational demand (68.35G). These results confirm
that our design achieves competitive performance with op-
timized efficiency.

3. More Visual Results

This section presents additional visual comparisons in
different datasets, including Snow100K-S [3], Snow100K-
L [3], Outdoor-Rain [2], RainDrop [5], and real-world im-
ages from Snow100K [3]. Specifically, the comparison
methods are TransWeather [7], Chen et al. [1], WGWS-
Net [9], WeatherDiff64 [4], and Histoformer [6].

Visual Results on Snow100K-S: Figures 1, 2.

Visual Results on Snow100K-L: Figures 3, 4.

Visual Results on Outdoor-Rain: Figures 5 6.

Results on RainDrop: Figures 7, 8.

Visual Results on real-world images: Figures 9, 10.
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Input TransWeather Chen et al. WGWSNet WeatherDiff Histoformer Ours GT
Figure 1. Visual comparison on Snow100K-S dataset [3].
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Figure 2. Visual comparison on Snow100K-S dataset [3].

Snow100K-L
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Figure 3. Visual comparison on Snow100K-L dataset [3].

Snow100K-L
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Figure 4. Visual comparison on Snow100K-L dataset [3].
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Figure 5. Visual comparison on Outdoor-Rain dataset [2].
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Figure 6. Visual comparison on Outdoor-Rain dataset [2].
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Figure 7. Visual comparison on RainDrop dataset [5].
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Figure 8. Visual comparison on RainDrop dataset [5].

Input TransWeather Chen et al. WGWSNet WeatherDiff Histoformer Ours GT
Figure 9. Visual comparison on real-world images from Snow100K dataset [3].
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Figure 10. Visual comparison on real-world images from Snow100K dataset [3].
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