MagicHOI: Leveraging 3D Priors for Accurate Hand-object Reconstruction
from Short Monocular Video Clips

1. Method

1.1. Space alignment

As described in the main paper, the goal of space alignment
is to optimize the rotation R, € SO(3) and translation t, €
R3 to register the object coordinate space with the novel
view synthesis (NVS) model space using the following loss
terms:

3D correspondence term: This term penalizes the distance
between corresponding 3D points { P, P} 5o that they
coincide in the NVS model space:
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where p is the Huber loss, which lessens the impact of out-
liers.

Perspective-n-Point (PnP) term: This term minimizes the
projection error so that the 2D projections of the trans-
formed 3D points {P"'} match their 2D correspondences
{p™} in the NVS reference image:
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1.2. Regularization of observed object regions

As described in the main paper, object regularization under
limited observed views aims to optimize the object parame-
ters 1), to recover object accurate shape and texture.

Similar to HOLD [2], we incorporate visual observations
by adding an RGB loss, Lrgp, defined as the L1 distance
between each rendered pixel and its corresponding observed
pixel. To encourage consistency with the object’s segmen-
tation mask, we enforce segmentation 10ss Leem, computed
between the rendered mask and the ground-truth mask ob-
tained from the video-segmentation model Cutie[1].

In contrast to HOLD [2], we regularize the geometry
to enforce surface smoothness through the following con-

straint:

Lsmooth = Z ||ni - nj”2 3)
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where n; and n; are normal vectors at neighboring pixels 4
and j.

1.3. Object model training

We represent the object using an efficient hash grid with
neural SDF rendering. The 3D implicit SDF representation
is trained for 3000 iterations, taking approximately 25 min-
utes on an RTX 4090.

During the first 1,000 iterations, we apply only Lgrga,
Liegm, and Lgmoom, supervising them solely with the ob-
served images with a batch size of 1. From iteration 1,000
to 3,000, Lnvs takes effect, and Lrgr, Lsegm> and Lomooth
are supervised by both the observed and reference images
with the batch size of 1. Atiteration 2000, the visibility grid
is determined. From iteration 2000, the weighting factor p
takes effect.

To enhance training efficiency and stability, we follow
Magic3D [3] for computing the Lnys loss on novel views.
Training starts at a resolution of 64x64 pixels for the first
400 iterations with a batch size of 8, increases to 128x128
pixels from 400 to 700 iterations with a batch size of 4, and
reaches 256x256 pixels from 1000 to 2000 iterations with a
batch size of 2.

Novel views are sampled in spherical coordinates with
an elevation range of [—30°,30°], an azimuth range of
[—180°,180°], a fixed distance of 2 meters, and a vertical
field of view of 41.5°. All pixels in each image are sampled
at every iteration.

1.4. Hand-object alignment

As described in the main paper, we optimize the hand trans-
lation t, and global scale s to achieve accurate hand-object
alignment.

Similar to HOLD [2], we enforce consistency between
the ground-truth (GT) and predicted hand-joint projections.

In contrast to HOLD [2] which treats every finger-
tip as a potential hand—object contact point, we keep
only high-confidence visible contact vertices, excluding
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Figure 1. HOLDI[2] large deviation between hand and object
after hand-object pose refinement. The lack of reconstruction
in occluded object regions leads to unreliable contact, resulting in
significant hand-object deviation.

those occluded by either the object or the hand itself.
Hand-object alignment is then encouraged by enforcing
contact between )}, and V), yielding physically plausible
interactions. The loss term is defined as:

Z Vi = Vil (4)

In addition, we enforce temporal smoothness of the hand
vertices between consecutive frames with the smoothness
constraint Lygmooth -

M
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where M is the number of hand vertices, V and V7, are
the positions of the ¢-th vertex at frames ¢ and ¢ 4 1, respec-
tively.

Meanwhile, we prevent hand—object interpenetration by
introducing a penetration constraint Lpeneir :

penelr = Z maX 0 d ) (6)
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where d(-) is the query SDF value from the object im-
plicit function fy,_ , H represents the hand mesh, and v is an
arbitrary vertex of the hand mesh.

2. Experiment Details

2.1. Short sequence selection

All short sequences are extracted from the long HO3D se-
quences used in HOLD. Each long sequence is first divided
into clips of 30 consecutive frames. We then run HLoc [5, 6]
on every clip to estimate the camera poses; some frames,
however, yield invalid poses because of low texture. We
keep the first clip that contains all 30 valid poses. If no clip
satisfies this requirement, we retain the clip with the largest
number of valid poses and we simply discard the invalid
frames. The resulting set of selected sequences is summa-
rized in Table 1.

Object Sequence name  Frames
bleach ABF12 180 ~ 209
bleach ABF14 180 ~ 209
potted meat GPMF12 90 ~ 119
potted meat GPMF14 90 ~ 119
cracker box MCl1 0~29
cracker box MC4 0~29
power drill MDF12 60 ~ 89
power drill MDF14 300 ~ 329
sugar box ShSul0 30 ~ 59
sugar box ShSul2 30 ~ 59
mustard SM2 90 ~ 112
mustard SM4 00 ~ 26
mug SMul 00 ~ 29
mug SMu40 14 ~ 28

Table 1. HO3D sequences for our method and baseline methods
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Figure 2. Qualitative comparison with SOTA. Reconstruction
results from HO3D, comparing our method with SOTA baselines
in both hand-object front view and object only rotated view.

2.2. Large hand-object deviation in HOLD

On short video clips, the pose-refinement stage of HOLD
often produces large hand—object misalignment, as indi-
cated by large CDy, in Table 1 of the main paper, which can
cause the optimization to diverge, as illustrated in Figure 1.
These failures stem from spurious contact-loss signals trig-
gered by artifacts and noise on the unreconstructed back-
side of the object. By explicitly reconstructing the backside
geometry, our method suppresses these errors and yields
markedly more stable and accurate hand-pose estimates.

2.3. Qualitative comparison with SOTA methods

Additional examples are shown in Figure 2 to compare our
results with recent SOTA approaches. Our method reliably
completes unseen object regions and reconstructs complex
shapes, even under severe hand-induced or self-occlusion,
producing detailed geometry and a realistic hand—object
spatial relationships. By contrast, HOLD [2] fails to re-
cover the missing object parts and leaves a noticeable gap
between the hand and the object; iHOI [9] struggles to re-
construct the full geometry; EasyHOI [4] hallucinates im-
plausible shapes and exhibits hand—object penetration; and
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Figure 3. Reconstruction results of Trellis. Reconstruction re-
sults from Trellis from front view and back view with the same
input image as our method.

DiffHOI [10] typically recovers only overly simple geome-
try.

3. Discussion

Similar to HOLD [2], our method relies on accurate object
pose initialization from HLoc [5, 6]; however, this initial-
ization often fails for textureless or thin objects.

Although our method already surpasses the current

SOTA reconstruction quality, integrating more advanced
NVS models could further boost performance. As illus-
trated by the EasyHOI results, the SOTA image-to-3D
method InstantMesh [8] still produces noticeable distor-
tions. We therefore evaluated another SOTA image-to-3D
approach, Trellis [7], using the same reference image as our
method. As shown in Figure 3, even with this latest NVS
model, some objects remain heavily distorted in the un-
observed regions, and their surfaces tend to appear overly
thick.
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