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Figure 1. Overview of Flux-Multi Tuning.

Figure 2. Gradient norms of main projector modules of Flux-
Multi trained InternVideo2 on K400. We report the L2 gradient
norm using bs=32.

1. More Experiments001

1.1. More ablation studies002

We here provide more ablation studies on Flux, includ-003
ing analyzing Flux’s training stability with gradient norm,004
full results using different spatiotemporal resolutions and005
a corresponding heuristic TO validation strategy, and con-006
vergence analysis and experimenting with possible token007
merging methods in Flux. This will provide a more in-depth008
analysis of the whole Flux method.009

Training dynamics and convergence analysis As il-010
lustrated in Figure 2, we analyze the gradient norms011
across the main projector layers in the Flux-Multi Tuned012

Figure 3. Convergence analysis of Flux-Single tuning using
3072 tokens but different frame counts directly on K400.

Figure 4. Overall gradient norm trend during Flux-UMT per-
training. We report the overall training dynamics with our abla-
tion setting. The FluxViT modules can lower the overall norm.

InternVideo2-S. The Patch Embedding Layer exhibits no- 013
tably elevated gradient norm values, particularly when pro- 014
cessing higher input settings with a smaller number of input 015
tokens. This gradient magnitude disparity could potentially 016
introduce training instability. Considering this and to gen- 017
erate more stable token-selection masks as introduced be- 018
fore, we use the Dual Patch Norm module, which shares 019
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#Frame Spatial Resolution Max168 196 224 252 280
4 80.4 81.7 82.3 82.6 82.3 82.6
6 83.5 84.5 84.3 84.2 83.6 84.5
8 84.4 84.8 84.6 84.4 83.7 84.8
10 85.2 85.1 85.0 84.5 83.5 85.2
12 85.3 85.3 84.9 84.4 83.4 85.3
16 85.3 85.1 84.8 84.4 83.5 85.3
20 85.1 85.0 84.6 84.0 83.2 85.1
Max 85.3 85.3 85.0 84.5 83.7 -

Table 1. Results of FluxViT-S on K400 using 1024 tokens and
different spatiotemporal resolutions. We use 1clip × 1crop for
testing. The blue value marks the results of the unmasked setting.
The values in bold show the best resolution for each frame count.

Method Input Size #Token
1024 512

Our selector

4×2242 82.3 79.5
8×2242 84.6 81.3

12×2242 84.9 80.7
16×2242 84.8 80.7
20×2242 84.6 80.3
24×2242 84.6 80.3

Max 84.9 81.3

w/ Vid-TLDR

4×2242 ∅ 77.4 78.2
8×2242 83.9 81.0 79.8

12×2242 85.0 81.4 80.6
16×2242 85.3 81.5 80.9
20×2242 85.2 80.9 80.4
24×2242 85.2 80.5 80.3

Max 85.3 81.5 80.9

Table 2. Use token merging strategy Vid-TLDR [6] on FluxViT
K400 testing. The increment achieved by ViD-TLDR is sensitive
to the hyper-parameter setting, like how many tokens are to be
reduced in certain layers.

similar findings with DPN[13]. However, our convergence020
analysis, presented in Figure 3, reveals that our Flux-Single021
tuning with InternVideo2-S, utilizing 3072 tokens and di-022
rect tuning over 40 epochs on the K400 dataset, demon-023
strates consistent convergence patterns. Specifically, con-024
figurations with varying frame counts but a fixed token025
number exhibit normal convergence behavior during tuning.026
This observation suggests that the aforementioned instabil-027
ity may not be the primary concern in Flux training. Con-028
sequently, we prioritize DPN’s capability to generate robust029
masks over its stabilization properties in fine-tuning scenar-030
ios and prioritize DPN’s capability in stabilized training in031
the pre-training stage, considering the results in Figure 4032
and the results in the previous Flux-UMT ablation study.033

Full results using different spatiotemporal resolutions.034
Table 1 shows the results of FluxViT-S on K400 using dif-035
ferent spatiotemporal resolutions but with a kept 1024 num-036
ber. Using lower spatial resolution but with a larger frame037
count can further strengthen the model’s performance,038
which causes another +0.3% performance gain compared039
with the best result achieved using standard 224 resolution.040

This may reflect the dataset’s bias towards longer inputs and 041
our method’s preference for more dynamic tokens instead 042
of highly informative spatial tokens. Moreover, we find 043
that the best-performing areas are mainly located within a 044
threshold of input tokens, which can be seen as the bolded 045
values of each frame count mainly located within an anti- 046
diagonal line. This observation validates our approach of 047
imposing a threshold on input token numbers and sug- 048
gests an optimized evaluation strategy for determining 049
optimal input configurations. We propose a systematic 050
evaluation procedure: beginning with minimal input set- 051
tings (e.g., 4×2242), incrementally increase frame counts 052
until performance plateaus, then progressively reduce spa- 053
tial resolution while increasing frame count until accuracy 054
improvements cease. This linear complexity evaluation ap- 055
proach efficiently identifies the near-optimal configuration 056
for token optimization. 057

Combining modern token merging strategy. The in- 058
tegration of state-of-the-art training-free token-merging 059
strategies during inference presents an opportunity to fur- 060
ther enhance our Flux method’s performance. Table 2 061
demonstrates the performance achieved by incorporating 062
the advanced Vid-TLDR [6] token reduction approach with 063
our FluxViT-S model on K400. Vid-TLDR implements to- 064
ken merging within the initial network blocks to regulate 065
token count. For configurations targeting 1024 tokens, we 066
apply Vid-TLDR to progressively reduce token counts to 067
[2048, 1536, 1024] across the first three layers. Similarly, 068
for 512-token configurations, we evaluate two reduction se- 069
quences: [1024, 512] and an alternative [1536, 1024, 512] 070
(denoted by gray values in the table). While results from 071
the first two reduction strategies demonstrate the potential 072
synergy between advanced token-selection methods and our 073
Flux approach, the latter sequence, despite incorporating 074
more tokens in initial layers and involving more compu- 075
tation overhead, underperforms our baseline that employs 076
a heuristic token-reduction method. This outcome shows 077
Vid-TLDR’s limitations in accommodating diverse token 078
reduction requirements and highlights its ongoing need for 079
extensive parameter searching. Thus, we only adopt our 080
heuristic but nearly costless token selection method in- 081
stead of the heavy, nonflexible, and unstable token merging 082
method in Flux. 083

1.2. More results 084

Full retrieval results. Table 3 shows more zero-shot re- 085
trieval results on MSRVTT [29], DiDeMo [1], Activi- 086
tyNet [9], LSMDC [23], and MSVD [5]. We see that 087
MSRVTT and ActivityNet enjoy only marginal perfor- 088
mance gain using 2048 tokens, which may be due to the 089
information saturation for these datasets as also observed in 090
InternVideo2 [28] when finding little gain by enlarging the 091
frame count from 4 to 8 and 16. The other three datasets 092
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Method #Token Type MSRVTT DiDeMo ActivityNet LSMDC MSVD
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

FluxViT-S

2048
T2V 44.4 67.0 75.6 48.3 74.4 82.3 52.4 79.0 87.5 20.8 36.0 44.2 49.3 77.7 85.5
V2T 44.3 67.7 77.9 50.4 75.1 83.2 53.0 79.4 88.4 21.6 37.6 45.5 78.7 92.8 95.4

1024
T2V 42.2 64.4 74.0 45.4 72.1 79.5 47.2 73.9 84.8 18.7 35.9 43.8 47.3 76.9 84.4
V2T 43.1 65.7 74.6 47.0 71.6 80.6 48.0 75.1 85.1 20.3 37.2 45.4 79.3 92.5 95.7

512
T2V 36.8 59.5 69.6 38.5 65.7 74.7 38.2 65.2 76.1 17.2 33.0 41.7 45.1 74.0 82.3
V2T 37.0 61.2 70.2 40.0 65.7 75.2 38.5 64.3 76.5 17.8 33.8 41.1 75.5 90.5 93.6

FluxViT-S+

2048
T2V 45.0 67.5 75.8 49.2 74.5 82.8 52.4 79.0 87.5 21.1 38.2 46.0 49.7 77.8 85.8
V2T 44.9 68.2 76.5 51.2 74.9 82.9 53.8 78.0 89.2 22.4 38.6 46.4 80.2 93.6 95.5

1024
T2V 44.5 66.4 74.6 49.0 73.9 82.4 50.3 76.9 86.4 20.5 36.6 44.8 49.1 77.0 85.5
V2T 44.2 67.4 76.4 50.5 74.1 82.4 50.9 77.8 87.3 21.7 38.5 45.3 80.2 92.2 94.5

512
T2V 40.5 62.7 71.7 45.8 71.4 80.5 44.7 71.8 82.5 19.0 34.3 40.8 46.9 76.2 84.0
V2T 41.1 63.4 73.1 47.0 71.6 79.4 44.7 71.8 82.8 19.2 35.0 41.7 78.1 90.0 93.6

FluxViT-B

2048
T2V 49.8 72.2 80.1 52.2 77.5 84.5 56.6 81.5 89.6 23.7 41.0 49.3 52.6 80.1 86.7
V2T 49.3 73.6 81.5 53.0 78.9 86.7 57.6 82.9 91.3 24.8 42.0 49.3 83.3 94.2 96.6

1024
T2V 48.0 69.6 78.0 48.8 75.5 82.6 51.8 78.4 87.5 22.6 39.9 48.3 51.9 79.5 86.2
V2T 46.5 70.5 78.0 50.5 76.4 83.5 53.4 79.7 88.4 24.0 41.4 49.1 83.0 94.8 96.9

512
T2V 42.6 64.4 73.7 42.9 68.9 77.7 42.8 69.3 79.9 20.1 36.6 45.3 49.6 77.6 84.9
V2T 41.5 65.2 74.0 44.5 70.3 77.9 43.3 70.1 80.6 21.4 37.5 46.0 80.9 92.8 95.4

FluxViT-B+

2048
T2V 49.9 71.0 79.6 53.5 77.3 86.1 56.7 81.6 89.9 25.4 41.7 50.5 54.2 80.9 88.0
V2T 49.4 73.9 82.4 54.2 78.6 86.8 58.3 83.3 91.4 25.6 42.6 50.4 84.2 93.9 96.6

1024
T2V 49.1 71.4 79.3 53.0 77.4 84.4 55.2 80.8 88.6 24.1 40.9 49.5 53.4 80.7 87.9
V2T 48.9 71.4 79.9 54.3 78.6 86.1 57.0 82.2 90.4 25.3 42.8 50.3 84.9 93.9 96.9

512
T2V 47.2 68.6 77.0 49.8 74.6 82.4 50.3 76.0 85.0 22.5 38.2 47.1 52.1 79.3 86.7
V2T 46.5 71.1 78.6 51.2 75.5 83.4 50.9 76.7 85.6 23.0 40.3 47.6 83.0 93.9 96.4

Table 3. Full Zero-shot retrieval results on MSRVTT, DiDeMo, AcitivityNet, LSMDC, and MSVD.

Method K400 K600 UCF101 MiTv1Top1 Top5 Top1 Top5

FluxViT-S2048 66.7 88.5 65.2 87.3 85.8 28.2
FluxViT-S2048+ 67.0 88.8 65.5 87.5 87.5 28.6
FluxViT-S1024 64.2 86.6 62.8 85.7 85.1 27.2
FluxViT-S1024+ 65.6 87.9 64.3 86.5 87.2 27.8
FluxViT-S512 59.0 82.6 57.4 81.2 81.5 25.5
FluxViT-S512+ 62.6 85.5 61.1 84.2 84.2 26.5

FluxViT-B2048 70.2 90.6 68.9 89.5 88.7 31.2
FluxViT-B2048+ 70.7 90.9 69.3 89.8 89.1 31.5
FluxViT-B1024 68.6 89.6 67.2 88.4 87.8 30.4
FluxViT-B1024+ 69.6 90.1 68.3 89.0 89.1 31.0
FluxViT-B512 64.2 86.1 62.5 84.9 84.9 28.8
FluxViT-B512+ 67.4 87.4 65.8 87.7 87.6 29.8

Table 4. Full Zero-shot Action Recognition Results.

highlight our Flux method’s effects more with 2048 tokens,093
while all these datasets demonstrate our costless perfor-094
mance improvement with 1024 and 512 token inputs.095

More zero-shot action recognition results. Table 4096
shows more zero-shot retrieval results of our FluxViT on097
K400 [11], K600 [3], UCF101 [25], and MiTv1 [20].098

2. More implementation details099

In this section, we introduce the detailed training hyperpa-100
rameters and report the training dataset details in Table 8.101

config SthSth V2 Others
optimizer AdamW [17]
optimizer momentum β1, β2=0.9, 0.98
weight decay 0.05
learning rate schedule cosine decay [18]
learning rate 1e-3
batch size 2048
warmup epochs [8] 20
total epochs 100
teacher input token 2048
student input tokens 2048, 1536, 1024
input frame (4, 26, stride=2)
spatial resolution (168, 280, stride=28)
drop path [10] 0.05
flip augmentation no yes
augmentation MultiScaleCrop [0.66, 0.75, 0.875, 1]

Table 5. Flux-UMT pre-training settings.

Flux-UMT pre-training. In combining Flux and 102
UMT[15] framework to get our single modality FluxViT 103
model, we follow most settings as used in deriving 104
InternVideo2 models. Details are shown in Table 5. 105

Single modality fine-tuning. We adopt the Flux-UMT pre- 106
trained video encoder and add an extra classification layer 107
for fine-tuning. Input settings are kept the same, and the 108
details of hyperparameters are given in Table 6. 109

Flux-CLIP per-training. In combining Flux and 110
CLIP[22] framework to get our multi-modality FluxViT 111
model, we show the details in Table 7. We freeze all the 112
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config Kinetics COIN
optimizer AdamW [17]
optimizer momentum β1, β2=0.9, 0.999
weight decay 0.05
learning rate schedule cosine decay [18]
learning rate 2e-4 5e-4
batch size 1024+512 512
warmup epochs [8] 5+1 5
total epochs 35+5 (S), 20+3 (B) 40(S), 25 (B)
drop path [10] 0.1
flip augmentation yes
label smoothing [26] 0.0
augmentation RandAug(9, 0.5) [7]

Table 6. Action recognition fine-tuning settings. The training
epochs A+B on Kinetics include A epochs on K710 and B epochs
on K400, the same notation for warmup-epochs and batch size.

config 25M+2.5M
optimizer AdamW [17]
optimizer momentum β1, β2=0.9, 0.98
weight decay 0.02
learning rate schedule cosine decay [18]
learning rate 4e-4 (25M), 2e-5 (2.5M)
batch size 4096 (image), 4096 (video)†
warmup epochs [8] 0.6 (25M), 0 (2.5M)
total epochs 3 (25M), 1 (2.5M)
input frame (4, 26, stride=2)
spatial resolution (168, 280, stride=28)
token threshold (2048, 4096)
augmentation MultiScaleCrop [0.5, 1]

Table 7. Flux-CLIP pre-training settings. †: For FluxViT-B, we
lower the batch size to 2048 for the 2.5M data training.

Dataset #image/video #text Type

Kinetics-710 [14] 658K 0 Video
COCO [16] 113K 567K image
Visual Genome [12] 100K 768K image
SBU Captions [21] 860K 860K image
CC3M [24] 2.88M 2.88M image
CC12M [4] 11.00M 11.00M image
S-MiT0.5M [19] 0.5M 0.5M video
WebVid-2M [2] 2.49M 2.49M video
WebVid-10M [2] 10.73M 10.73M video
InternVid2M [27] 2.0M 2.0M video

25M corpus = CC3M+CC12M
25.68M 26.81M video + image+WebVid-10M+Visual Genome

+SBU+COCO
2.5M corpus = S-MiT+InternVid2M+COCO 2.56M 2.62M video + image

Table 8. Statistics of pre-training datasets.

modules in 25M data pretraining as Stage 1, except the113
vision projector. We unfreeze all the modules for the Stage114
2 training on the 2.5M dataset.115

Chat Centric Training We freeze both the LLM and the116
Vision Encoder in the common stage-1 training of a chat117
model. We use a learning rate of 1e-3, a batch size of 512,118
a single training epoch, and a cosine learning rate schedule119
with a 0.03 warmup rate.120
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