
6. Appendix
6.1. Uniform-sum Compression Ratio Sampling
We share the details of our sampling algorithm here:

Algorithm 1 Uniform-Sum Compression Ratio Sampling

1: Input: Number of layers n, predefined sum range
[smin, smax], upper bound u

2: Output: compression ratios {r0, r1, . . . , rn} such that∑
ri = S

3: Smin ← smin × 10, Smax ← smax × 10, U ← u× 10
4: Sample a target sum of compression ratios:
5: S ∼ Uniform(Smin, Smax)
6: repeat
7: Sample compression ratios from a Dirichlet distri-

bution:
8: (r0, r1, . . . , rn) ∼ Dirichlet(α)
9: Scale sampled values to ensure their sum equals S:

10: ri ← ri · S, for all i
11: until ri ≤ U for all i
12: Apply Largest Remainder Method (LRM) for

rounding:
13: Round down each element: R← ⌊ri⌋
14: Compute remaining difference: diff← S −

∑
R

15: if diff > 0 then
16: Compute fractional remainders: remainder← ri −

R
17: Sort indices by largest remainder in descending or-

der
18: for i = 1 to diff do
19: Increment R at the index with the highest re-

mainder
20: end for
21: end if
22: for i = 0 to n do
23: ri ← Ri/10
24: end for
25: Return {r0, r1, . . . , rn}

For the Swin-Tiny backbone that we use in the experi-
ments, the number of blocks is 6, and the upper bound for
compression ratios is 0.8.

We aim for the relative computational cost to fall within
the range [0.65, 0.95]. Given that MixA-Q reduces com-
putations by 50%, the corresponding range for the sum of
compression ratios is computed as:

[(1− 0.95)× 6× 2, (1− 0.65)× 6× 2] = [0.6, 4.2]
Note that during sampling, we assume that all blocks have
an equal number of BOPs. However, in our experiments, the
reported relative computational cost is recalculated based
on the actual distribution of BOPs across different blocks.

In Tab. 6 we compare the SAQA using uniform-sum
sampling and naive uniform sampling. It can be observed
that SAQA with uniform-sum sampling constantly achieves
higher mAP at different averaged activation bits.

Act Bit mAP

SAQA uni.sum
3.36* 43.4
3.23* 43.2
3* 42.4

SAQA 3.36* 43.0
3.23* 42.8
3* 41.9

Table 6. mAP performance comparison of SAQA using uniform-
sum sampling and naive uniform sampling. * indicates that the bit
width is a computationally weighted average.

In terms of sampling efficiency, as shown in Fig. 8, our
uniform-sum sampling is able to find configurations for
MixA-Q that is better than the PTQ baseline after only two
generations of the evolutionary search, while naive sam-
pling can’t. This means that our uniform-sum sampling
helps the search process to converge faster and thus saves
searching time.

Figure 8. Pareto front after two generations of evolutionary search
using different sampling methods.

6.2. Calculation of Equivalent Activation Bits
In this section we explain how the equivalent activation bits
(marked with *) in our experiment part are calculated for
MixA-Q and SparseViT. Given the GMACs (Giga Multiply-
Accumulate operations) of the Swin-Tiny backbone:

GMACs = [13.3, 13.56, 14.16, 14.16, 14.16, 14.02] (1)
C = 3 (2)

GMACs contains the number of GMACs for each pair of
consecutive Swin blocks and the C is the number of GMACs
of for downsampling layers whose computations can’t be
saved by MixA-Q or SparseViT.

In MixA-Q, 50% computations of the compressed win-
dows are saved while 100% computations of the pruned
windows are saved in SparseViT. Thus, for a given com-



pression or pruning ratio configuration RC and the activa-
tion bit of the baseline model ActBitbase the equivalent ac-
tivation bits ActBiteq is calculated as:

ratios =
(
1− r

2

)
, ∀r ∈ RC, if method is MixA-Q

(3)

ratios = 1− r, ∀r ∈ RC, if method is SparseViT
(4)

ActBiteq = ActBitbase ×
∑

i (ratiosi · GMACsi) + C∑
i GMACsi + C

(5)


	Appendix
	Uniform-sum Compression Ratio Sampling
	Calculation of Equivalent Activation Bits


