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A. Details of Instruction Prompts

Our NEURONS consists of four decoupled tasks, i.e., scene
description generation, concept name generation, segmen-
tation mask generation, and rule-based key object discov-
ery. However, the cc2017 dataset [45] only contains paired
fMRI and visual stimuli. To generate high-quality labels
to enable the decoupled tasks, we have designed a series of
detailed instruction prompts for Qwen and Grounded-SAM.
The complete instruction prompts are shown in Fig. a.

B. More Details about NEURONS

B.1. More Details about Brain Model

The Brain Model employs the MindEye2 [34] as the back-
bone, which consists of a ridge regression module, a Resid-
ual MLP module, and a diffusion prior network. The ridge
regression module maps xc to a lower dimensional for eas-
ier follow-up, the Residual MLP module further learns the
representation in a deeper hidden space, and the diffusion
prior network transforms the fMRI hidden features to im-
age embeddings.

The training of the Brain Model mainly consists of three
losses: contrastive learning loss LCLIPt between CLIP text
embedding êt and et, contrastive learning loss LCLIPv be-
tween CLIP video embedding êv → RBF→N→C and ev ,
and prior loss Lprior. LCLIPt and LCLIPv are the imple-
mentation of BiMixCo loss which aligns all the frames of a
video yc and its corresponding fMRI signal xc using bidi-
rectional contrastive loss and MixCo data augmentation.
The MixCo needs to mix two independent fMRI signals.
For each xc, we random sample another fMRI xmc

, which
is the keyframe of the clip index by mc. Then, we mix xc

and xmc
using a linear combination:

x↑
c
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(6)
where êt → RBF→N→C denotes the OpenCLIP embeddings
for video yc.

We use the Diffusion Prior to transform fMRI embed-
ding exc

into the reconstructed OpenCLIP embeddings of
video ev . Similar to DALLE·2, Diffusion Prior predicts the
target embeddings with mean-squared error (MSE) as the
supervised objective:

LPrior = Eeyc ,exc
,ω↓N (0,1)||ε(exc

)↑ eyc
||. (7)

B.2. Key Object Segmentation Objective
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where ŷseg is the ground truth masks of the key objects.

C. Details of Data Pre-processing
We utilized fMRI data from the cc2017 dataset, pre-
processed by [10] using the minimal preprocessing
pipeline [6]. The preprocessing steps included artifact re-
moval, motion correction (6 degrees of freedom), registra-
tion to standard space (MNI space), and transformation onto
cortical surfaces, which were coregistered to a cortical sur-
face template [7]. To identify stimulus-activated voxels, we
computed the voxel-wise correlation between fMRI signals
for each repetition of the training movie across subjects.
The correlation coefficients for each voxel were Fisher z-
transformed, and the average z-scores across 18 training
movie segments were evaluated using a one-sample t-test.
Voxels with significant activation (Bonferroni-corrected, P
< 0.05) were selected for further analysis. This process



Scene Description Generation

System Prompts: You will assist with image analysis tasks. Your
role is to analyze the given image and generate a descriptive
caption for the provided image. Please follow the rules:

- The output format should be: “Caption: *****.”.
- Cover all primary objects in the given image.
- Focus on the relationship between the objects.
- Strictly keep the caption in one phrase.
- Do not use a celebrities name such as "harry potter" in the

caption, use "boy", "girl", "man”, "woman" instead.
- Do not include any unnecessary commentary or explanations.
- Do not say anything else from the output format.

For example:
[Input]: Image size of 224 * 224
[Output]: Caption: a boy sitting on a chair holding a cup.
[Input]: Image size of 224 * 224
[Output]: Caption: an airplane flying to an airport.
[Input]: Image size of 224 * 224
[Output]: caption: two girls sitting on a couch.
[Input]: Image size of 224 * 224
[Output]: Caption: a woman with long black hair brushing teeth.
[Input]: Image size of 224 * 224
[Output]: Caption: a close up of a yellow eel in the ocean.
[Input]: Image size of 224 * 224
[Output]: Caption: a fish swimming in the ocean.

Primary Object Detection

System Prompts: You will assist with image analysis tasks. Your
role is to analyze the given image and identify the primary
objects and list their names. Please follow the rules:

- Strictly follow the output format: “Objs: [***, ***, …]”.
- Cover all primary objects in the given image.
- Only provide the object names of the primary objects.
- Make sure the object names are in one-word noun format, do

not add any descriptive adjectives or descriptive nouns.
- Keep only the object name in its singular form.
- Do not use a persons' name as object name such as "harry

potter", use "boy", "girl", "man”, "woman" instead.
- Separate each object name with a comma.
- Do not repeat any same word.
- Do not include any unnecessary commentary or explanations.
- Do not say anything else from the output format.

For example:
[Input]: Image size of 224 * 224
[Output]: Objs: [boy, chair, cup]
[Input]: Image size of 224 * 224
[Output]: Objs: [airplane, airport]
[Input]: Image size of 224 * 224
[Output]: Objs: [girl, couch]
[Input]: Image size of 224 * 224
[Output]: Objs: [woman]

Concept Generation

System Prompts: You will assist with text-related tasks. I will
give you a list of object names in the following form: Objs:
[***, ***, ***, …]. Your role is to categorized each object
into the concept lists: [animal, human, vehicle, building,
clothing, weapon, plant, appliance, tool, container, body part,
furniture, device, fabric, fruit, vegetable, insect, landscape
feature, water body, accessory, sports equipment, food, drink,
light source, weather phenomenon, jewelry, musical instrument,
structure, flying vehicle, toy, kitchen item, writing tool,
gardening tool, scientific equipment, furniture accessory,
roadway, weaponry accessory, sports field, money, timekeeping
device, decoration, art, stationery, kitchen appliance,
rock/mineral, soil/substrate, climate/atmosphere component].
Please follow the rules:

- Strictly follow the output format: “Concept: [***, ***, …]”.
- Only output the concept name in the given list.
- You can categorize the object into more than one concepts.
- If two objects belong to one concept, only list concept once.

For example:
[Input]: Objs: [boy, chair, cup]
[Output]: Concept: [human, appliance, furniture]
[Input]: Objs: [airplane, airport]
[Output]: Objs: [building, flying vehicle]
[Input]: Objs: [girl, couch]
[Output]: Objs: [human, furniture]
[Input]: Objs: [woman]
[Output]: Objs: [human](a) (b) (c)

Figure a. The overall detailed instruction prompts for scene description generation (a) and key concept generation (b-c).

identified 13,447, 14,828, and 9,114 activated voxels in the
visual cortex for the three subjects, respectively. Consistent
with prior studies [13, 26, 41], we incorporated a 4-second
delay in the BOLD signals to account for hemodynamic re-
sponse latency when mapping movie stimulus responses.

D. Implementation Details
In this paper, videos from the cc2017 dataset were down-
sampled from 30FPS to 3FPS to make a fair comparison
with the previous methods, and the blurred video was in-
terpolated to 8FPS to generate the final 8FPS video during
inference. The training of the Brain Model and Decoupler
was performed with 30 and 50 epochs, respectively, and the
batch size of training the Brain Model was set to 120, while
10 for the Decoupler. We use the AdamW [22] for optimiza-
tion, with a learning rate set to 5e-5, to which the OneCircle
learning rate schedule [35] was set. Theoretically, our ap-
proach can be used in any text-to-video diffusion model,
and we choose the open-source available AnimateDiff [12]
as our inference model following [10]. The inference is per-
formed with 25 DDIM [36] steps. All experiments were
conducted using a single A100 GPU.

E. More Experimental Results
E.1. Frame-based comparison with SOTAs.
We compare the frame-based evaluation metrics in Table a
with previous SOTA methods. NEURONS consistently ex-
cels in semantic-level frame understanding while maintain-
ing competitive pixel-level performance. As shown in Table
1, our method achieves the highest Semantic-level 2-way
accuracy (0.811), outperforming NeuroClips by 0.6% and
MinD-Video by 1.9%. For 50-way semantic classification,

weight_vs weight_cls weight_vrweight_txt

Figure b. Illustration of the progressive learning strategy.

Table a. Quantitative comparison of NEURONS reconstruction per-
formance against other methods (Frame-based). Bold font sig-
nifies the best performance, while underlined text indicates the
second-best performance. MinD-Video and NeuroClips are both
results averaged across all three subjects, and the other meth-
ods are results from subject 1. Results of baselines are quoted
from [10].

Method Semantic-level Pixel-level

2-way↔ 50-way↔ SSIM↔ PSNR↔
Nishimoto [26] 0.727±0.04 - 0.116±0.09 8.012±2.31

Wen [45] 0.758±0.03 0.070±0.01 0.114±0.15 7.646±3.48

Wang [42] 0.713±0.04 - 0.118±0.08 11.432±2.42

Kupershmidt [19] 0.764±0.03 0.179±0.02 0.135±0.08 8.761±2.22

MinD-Video [4] 0.796±0.03 0.174±0.03 0.171±0.08 8.662±1.52

NeuroClips [10] 0.806±0.03 0.203±0.01 0.390±0.08 9.211±1.46

NEURONS (ours) 0.811±0.03 0.210±0.01 0.365±0.11 9.527±2.26

subject 1 0.810±0.03 0.206±0.01 0.373±0.14 9.591±2.24

subject 2 0.810±0.03 0.214±0.01 0.353±0.08 9.502±2.40

subject 3 0.817±0.03 0.210±0.01 0.369±0.13 9.488±2.16

NEURONS attains 0.210, a 3.4% improvement over Neuro-



Clips, highlighting its capability to discern fine-grained se-
mantic patterns. In pixel-level metrics, NEURONS achieves
the second-best PSNR (9.527), surpassing NeuroClips by
3.4%, while its SSIM (0.365) remains competitive. The
observed trade-off between Wang’s high PSNR (11.432),
and its poor semantic performance (0.713 in 2-way) un-
derscores the challenge of balancing reconstruction fidelity
with semantic alignment—a challenge NEURONS addresses
effectively through its unified architecture. These results
validate that our approach advances the state of the art in
frame-based video understanding by harmonizing semantic
and low-level feature learning.

E.2. More Qualitative Comparison Results
To further highlight the superior performance of NEURONS,
we provide additional qualitative comparisons between our
method and the previous SOTA approach, NeuroClips [10],
as a supplement to Fig. 5. As we can see in Fig. d, Neu-
roClips produces many semantic errors (e.g., confusing a
“boat” with a “highway road”), whereas NEURONS pro-
duces more accurate and visually coherent results.

E.3. Qualitative Analysis of Ablation Study
We present qualitative results from the ablation study, as
illustrated in Fig. c. From the top case, the results demon-
strate that the Brain Model utilizing only Lrec exhibits lim-
ited semantic information. The inclusion of Lseg could cap-
ture more motion information. Lcls improves the accuracy
of concept recognition, such as distinguishing between hu-
mans and vehicles. Further incorporating Ltxt enables the
model to perceive broader scenes and environments, such
as bodies of water. Finally, the combination of progressive
learning and the aggregated video reconstruction pipeline
ensures that the video output is both semantically and spa-
tially accurate. In the more complex scene from the bottom
case, where the main elements (humans, streets) are easier
to identify, the reconstructed videos show no significant vi-
sual differences. However, we observe that Lseg tends to
make the model concentrate on key objects (e.g., only one
person generated in the video). In contrast, the loss func-
tions Lcls and Ltxt contribute to enriching the richness of
concepts and details within the scene. We also provide the
corresponding descriptions for the videos. It is evident that
the descriptions generated by our trained GPT-2 model are
more accurate. For example, in the bottom case, it success-
fully generates terms like “people” and “busy street” which
are consistent with the ground truths.

E.4. Concept Recognition Accuracy.
For one of our decoupled tasks, i.e., concept recognition, we
provide the accuracy score for each concept as a supplement
to Table. 3. The results are shown in Table. b.
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a woman
walking down a
busy street with
a crowd of
people

a crowd of
people walking
down the street

a woman
walking down
the street

a woman
walking down
the street with
a man in front
of her

a woman
walking down
the street with
a man on a
skateboard

a busy street 
scene with 
people walking 
and shopping

two people 
paddling in a 
canoe on calm 
water

a man is being
attacked by a
man in a suit

a man is in the
water with a
dog

a man is on a
jet ski in the
water

a man is riding
a motorcycle
on a street

a person laying
on the ground
with a
skateboard

Figure c. We present the generated videos alongside their corre-
sponding text descriptions. Note that the descriptions in the last
two columns are generated using our model Dtxt (highlighted in
yellow), while the other descriptions are produced by captioning
the middle frame using BLIP-2.

E.5. Details of Caption and Verb Evaluation
For caption evaluation, we follow traditional metrics for im-
age captioning [3], and report BLEU and CIDEr scores.



BLEU analyzes the co-occurrences of n-grams between the
candidate and reference sentences, and CIDEr employs TF-
IDF weighting to focus more on semantically informative
words that capture image-specific contents.

To better analyze the model’s motion understanding ca-
pabilities, we specifically evaluate verb accuracy within the
generated captions, providing a deeper insight into how ef-
fectively the model identifies dynamic actions during video
reconstruction. We first extract verbs from both generated
and ground truth captions using the part-of-speech (POS)
tagging model and then adopt Word2Vec embedding to cal-
culate semantic similarity between the verb pairs. The gen-
erated verb is considered correct if the similarity score ex-
ceeds the pre-defined threshold of 0.8.

F. Details of Brain Decoding Interpretation
To validate the inspiration behind our NEURONS, which
is drawn from the human visual cortex (see Fig.1 in the
Introduction section), we employ a visualization tool, i.e.,
BrainDecodesDeepNets [47], to project the embeddings of
each decoupled task onto a brain map. Specifically, we use
fMRI data as input and extract four projected embeddings
corresponding to the four decoupled tasks of NEURONS.
Next, we train a BrainNet [47] to reconstruct the original
fMRI image. Finally, following the approach of BrainDe-
codesDeepNets, we visualize the individual layer weights
for each decoupled task (see Fig. 6), further confirming our
initial insights. For the training of the brainNet, we utilize
the Algonauts 2023 challenge dataset, the same as Brain-
DecodesDeepNets [47]. We train it for 50 epochs using
AdamW optimizer on 1 RTX3090 GPU card. The learning
rate is set to 1e-5.

G. Limitations and Future Work
While NEURONS demonstrates strong performance in
fMRI-to-video reconstruction, several limitations remain.
First, the model is evaluated on a single dataset with lim-
ited subject diversity, restricting generalizability. Second,
the reconstructed videos, though temporally smooth, re-
main low in resolution and frame rate due to the coarse
temporal granularity of fMRI data. Additionally, current
evaluation metrics may not fully capture perceptual realism
or narrative coherence. Lastly, although the model shows
functional alignment with visual cortex regions, the neu-
robiological interpretation remains correlational rather than
causal.

Table b. Classification accuracy of all the concepts. ”-” denotes
no such concept in the test set.

Index Class Name Accuracy
0 animal 0.450
1 human 0.735
2 vehicle 0.228
3 building 0.070
4 clothing 0.184
5 weapon -
6 plant 0.196
7 appliance -
8 tool 0.0625
9 container 0.057
10 body part 0.163
11 furniture 0.155
12 device 0.033
13 fabric -
14 fruit 0.0
15 vegetable 0.0
16 insect -
17 landscape feature 0.144
18 water body 0.310
19 organism 0.212
20 fish 0.292
21 reptile 0.0623
22 mammal -
23 accessory 0.067
24 sports equipment 0.182
25 food 0.6
26 drink 0.0
27 light source 0.0
28 weather phenomenon 0.091
29 jewelry -
30 musical instrument -
31 structure 0.209
32 flying vehicle 0.283
33 toy -
34 kitchen item 0.214
35 writing tool -
36 gardening tool -
37 scientific equipment 0.0
38 furniture accessory 0.0
39 roadway 0.147
40 weaponry accessory -
41 sports field 0.042
42 money -
43 timekeeping device -
44 decoration -
45 art 0.0
46 stationery 0.111
47 kitchen appliance -
48 rock/mineral 0.0
49 soil/substrate 0.0
50 climate/atmosphere component 0.262



GT Neurons NeuroClips GT Neurons NeuroClips GT Neurons NeuroClips

Figure d. More qualitative comparison between NEURONS and the previous SOTA, NeuroClips.



H. Overview of AI Methodologies for Neuro-
science Readers

This study leverages several state-of-the-art AI models to
decode and reconstruct visual experiences from brain ac-
tivity. At the core is a neural network-based brain model
trained using contrastive learning, which aligns fMRI sig-
nals with visual and textual embeddings from CLIP, a
widely used vision-language model. The decoding process
is decomposed into four explicit sub-tasks—segmentation,
classification, captioning, and reconstruction—each mod-
eled by deep learning modules optimized with task-specific
loss functions. For video synthesis, we use diffusion mod-

els, a class of generative models that produce high-quality
video frames conditioned on the outputs of the brain model.
These AI components are organized in a biologically in-
spired, hierarchical manner to simulate the functional spe-
cialization of the human visual cortex.
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