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1. Experimental Details
Datasets and Training Setup For training, we utilize the
DIV2K dataset [2], which contains 800 high-quality im-
ages with diverse content. For evaluation, we employ five
standard SR benchmark datasets: Set5 [4], Set14 [39],
BSD100 [27], Urban100 [17], and Manga109 [28]. We also
evaluate on real-world datasets including DIV2K validation
tracks (Difficult, Wild, and Mild) and the real-world DSLR
dataset [6] with Canon and Nikon subsets to demonstrate
generalization capabilities. During training, we employ the
L1 loss function in conjunction with the Adam optimizer
(β1 = 0.9, β2 = 0.999). The batch size is set to 16, pro-
cessing low-resolution (LR) images of size 32 × 32 pix-
els. We implement a cosine annealing learning rate strat-
egy initialized at 2 × 10−4 over 500,000 iterations. All ex-
periments are conducted using the PyTorch framework on
4×NVIDIA A800 GPUs. For our targeted feature denois-
ing framework, we adopt a multi-objective training scheme
with loss weights set to λcls = 0.1 and λfeat = 0.01. Fol-
lowing Theorem 3.1, training prioritizes reconstruction in
early stages, deferring denoising until noise confidence sur-
passes 75%. This scheduling ensures stable content preser-
vation before handling high-frequency noise.
Degradation Modeling Protocol Following recent ad-
vances in blind image restoration [19, 31, 33], we construct
a comprehensive degradation pipeline to simulate diverse
real-world distortions. Specifically, we adopt a second-
order degradation process [23], which has become a stan-
dard benchmark for evaluating robustness and generaliza-
tion. The following eight degradations are considered:
1. Clean: Bicubic downsampling only.
2. Blur: Gaussian blur followed by bicubic downsampling.
3. Noise: Additive Gaussian noise followed by bicubic

downsampling.
4. JPEG: JPEG compression followed by bicubic down-

sampling.
5. Blur+Noise: Sequential application of Gaussian blur

and additive Gaussian noise, followed by bicubic down-
sampling.

6. Blur+JPEG: Sequential application of Gaussian blur
and JPEG compression, followed by bicubic downsam-
pling.

7. Noise+JPEG: Sequential application of additive Gaus-
sian noise and JPEG compression, followed by bicubic
downsampling.

8. Blur+Noise+JPEG: Combination of all three degrada-
tions.
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Figure 1. Noise detection accuracy when facing unknown
degradations during testing.

Formally, for a clean high-resolution image x, each de-
graded low-resolution observation y is synthesized as:

y = D ◦ C ◦ N ◦ B(x), (14)

where B denotes blurring, N denotes noise injection, C de-
notes JPEG compression, and D denotes downsampling.
Depending on the configuration, certain operators are re-
placed by the identity map.
Noise Detection Accuracy in Unseen Degradations. The
noise detection module demonstrates robust discriminative
capability across various benchmark datasets and degrada-
tion types, as illustrated in Figure 1. Particularly note-
worthy is the perfect detection accuracy (1.0) observed
for noise degradation across all evaluated datasets, which
validates our hypothesis regarding the distinctive spec-
tral characteristics of noise-induced corruption. While the
module maintains high accuracy for blur degradation (≥
0.99), we observe marginally lower accuracy for JPEG ar-
tifacts in BSD100 (0.84) and bicubic degradation in Ur-
ban100 (0.81). This performance disparity aligns with our
frequency-domain analysis, which revealed that noise ex-
hibits uniform spectral distribution, making it more dis-
tinctively identifiable compared to other degradations that
manifest primarily in specific frequency bands. The mod-
ule’s consistent performance across diverse datasets (Set5,
Set14, BSD100, Urban100, Manga109) further substan-
tiates the generalizability of our approach to real-world
super-resolution scenarios involving complex degradation
patterns.



GT Patch SWinIR +Dropout [19] HAT +Dropout [19]

Reference Image LR Patch +Alignment [31] +TDF +Alignment [31] +TDF (Ours)

GT Patch SWinIR +Dropout [19] HAT +Dropout [19]

Reference Image LR Patch +Alignment [31] +TDF (Ours) +Alignment [31] +TDF (Ours)

GT Patch SWinIR +Dropout [19] HAT +Dropout [19]

Reference Image LR Patch +Alignment [31] +TDF (Ours) +Alignment [31] +TDF (Ours)

Figure 2. Visual comparison of different super-resolution methods on BSD100 dataset with bicubic noise20 degradation.

Table 1. Noise detection accuracy before and after denoising.

Dataset
SRResNet RRDB HAT SwinIR

Before → After Before → After Before → After Before → After
Set5 1.00 → 0.00 1.00 → 0.01 0.99 → 0.00 0.99 → 0.00
Set14 1.00 → 0.00 1.00 → 0.00 0.98 → 0.01 0.99 → 0.01
BSD100 1.00 → 0.00 0.99 → 0.01 0.98 → 0.01 0.98 → 0.01
Urban100 0.98 → 0.02 0.97 → 0.03 0.96 → 0.03 0.95 → 0.04
Manga109 0.99 → 0.01 0.98 → 0.02 0.97 → 0.02 0.97 → 0.02

Noise Detection Accuracy Before and After Denoising.
Table 1 demonstrates the efficacy of our feature denois-
ing framework by comparing noise detection rates before
and after applying the denoising module across multiple
super-resolution architectures and benchmark datasets. The
results reveal a remarkable transition in detection rates,
with pre-denoising values approaching perfect classifica-

tion (0.95-1.00) across all model-dataset combinations, in-
dicating consistent identification of noise-corrupted fea-
tures. After applying our denoising module, detection rates
plummet dramatically to near-zero values (0.00-0.04), pro-
viding compelling evidence that our approach effectively
eliminates noise characteristics from the feature represen-
tations. This pronounced before-after contrast is particu-
larly evident in the SRResNet architecture, where the Set5,
Set14, and BSD100 datasets exhibit a complete reversal
from 1.00 to 0.00 detection rates. The consistently low
post-denoising detection rates across architectures (SRRes-
Net, RRDB, HAT, and SwinIR) and datasets substantiate the
architecture-agnostic nature of our method. The marginally
higher post-denoising rates observed in Urban100 (0.02-
0.04) likely reflect the dataset’s complex structural pat-
terns, which present greater challenges for discriminat-
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Figure 3. Visualization of Feature Denoising Efficacy Across
Diverse Visual Domains.

Table 2. Ablation study on different feature fusion strategies.

Model Fusion Method Test Sets (PSNR)
Set5 Set14 BSD100 Urban100 Manga109

SRResNet

Addition 26.27 23.76 23.45 21.89 18.86
Concatenation 26.44 23.92 23.62 22.05 19.01
Multiplication 26.71 24.10 23.87 22.28 19.22

Baseline 24.85 23.25 23.06 21.24 18.42

SwinIR

Addition 26.53 24.62 23.83 22.28 19.12
Concatenation 26.68 24.78 23.97 22.46 19.25
Multiplication 26.92 24.96 24.14 22.63 19.34

Baseline 26.25 24.53 23.91 22.18 19.10

ing between residual noise and high-frequency content de-
tails. These quantitative results corroborate our qualitative
observations and theoretical analysis, confirming that our
approach effectively addresses the noise overfitting phe-
nomenon by selectively suppressing noise-related features
while preserving content-relevant information.
Feature Visualization Analysis. Figure 3 compares fea-
ture maps across degraded inputs, SRResNet, and our TFD-
enhanced outputs, revealing how TFD reshapes feature rep-
resentation under noise. In a wildlife scene with fox cubs,
SRResNet’s features are dominated by chaotic color noise,
masking structural details, while TFD recovers clear object
boundaries and preserves the cubs’ morphology. For a hu-
man subject outdoors, SRResNet features are corrupted by
irregular activations, weakening the semantic consistency
of facial and body contours, whereas TFD suppresses noise
and enhances structural clarity. In a challenging case of a

tiger in natural habitat, SRResNet’s features dissolve into
noise, making the striped pattern almost unrecognizable,
while TFD restores both texture and shape with remarkable
fidelity. In an urban scene, SRResNet struggles to main-
tain geometric regularity, fragmenting building edges and
human outlines, while TFD reconstructs rectilinear struc-
tures and preserves human silhouettes. These consistent
improvements across diverse cases demonstrate that TFD
selectively suppresses noise-induced distortions while safe-
guarding content-relevant details, offering a robust and gen-
eralizable solution to feature corruption in degraded image
super-resolution.
Comparison with Existing Regulation Strategies. The
quantitative results presented in Tables 3 provide a system-
atic evaluation of TFD against existing regularization tech-
niques across five benchmark datasets. For CNN-based
architectures (SRResNet, RRDB), TFD consistently out-
performs both Dropout and Feature Alignment methods
across all degradation types, with particularly substantial
gains on noise-corrupted images. Specifically, on SRRes-
Net, TFD achieves average PSNR improvements of 0.78dB
over the baseline and 0.42dB over the next best method
(Alignment) on Set5. This performance advantage ex-
tends to transformer-based architectures (HAT, SwinIR),
where TFD maintains its superiority despite their inher-
ently stronger baseline performance. The improvement
pattern is consistent across datasets of varying complex-
ity - from the simpler Set5 to the challenging Urban100
and content-specialized Manga109. Notably, TFD’s effi-
cacy becomes more pronounced under complex degradation
scenarios (e.g., Blur+Noise+JPEG), suggesting its robust
generalization capability. These results empirically vali-
date our hypothesis that targeted noise suppression, rather
than uniform regularization, is crucial for enhancing cross-
degradation generalization in image super-resolution.
Comparison with Different Fusion Strategies. The re-
sults in Table 2 demonstrate the effectiveness of differ-
ent cross-domain feature integration strategies within our
framework. When comparing various integration methods,
we observe that Multiplication consistently outperforms al-
ternative strategies across all benchmark datasets. For SR-
ResNet, adaptive modulation delivers significant improve-
ments over element-wise addition and channel concatena-
tion. This pattern holds for SwinIR as well, though with
smaller margins due to its stronger baseline performance.
The superiority of Multiplication can be attributed to its
dynamic nature—the frequency-derived attention mask se-
lectively modulates spatial features based on noise concen-
tration, effectively preserving structural details while sup-
pressing noise artifacts. In contrast, element-wise addition
treats all features equally, while concatenation merely com-
bines rather than filters information.



Table 3. Average PSNR of different methods in ×4 blind SR on five benchmarks with eight types of degradations.

Data Method Clean Blur Noise JPEG Blur+Noise Blur+JPEG Noise+JPEG Blur+Noise+JPEG Average

Se
t5

SRResNet [20] 24.85 24.73 23.69 23.69 23.25 23.41 23.10 22.68 23.68
+Dropout (p = 0.7) 25.63 25.23 23.82 24.05 23.47 23.64 23.46 23.01 24.04

+Alignment 25.93 25.62 24.15 24.38 23.79 23.86 23.71 23.19 24.33
+TFD 26.71 26.20 24.31 24.49 23.39 23.92 23.67 22.99 24.46

RRDB [32] 25.18 25.12 22.92 23.82 23.44 23.45 23.32 22.81 23.76
+Dropout (p = 0.5) 26.02 26.07 23.23 24.15 23.73 23.88 23.68 23.18 24.24

+Alignment 26.78 26.55 24.02 24.70 24.12 24.14 23.93 23.26 24.69
+TFD 26.83 26.59 24.96 24.56 24.07 24.04 23.81 23.14 24.75

SwinIR [23] 26.25 26.03 24.15 24.37 23.80 23.84 23.67 22.99 24.39
+Dropout (p = 0.5) 26.32 26.08 24.21 24.41 24.00 23.93 23.65 23.09 24.46

+Alignment 26.49 26.23 24.61 24.68 24.13 24.17 23.89 23.09 24.66
+TFD 26.92 26.43 24.76 24.56 23.90 24.03 23.77 23.09 24.68

Se
t1

4

SRResNet [20] 23.25 23.05 22.50 22.36 22.23 22.10 22.06 21.77 22.41
+Dropout (p = 0.7) 23.73 23.45 22.53 22.62 22.28 22.39 22.28 21.98 22.66

+Alignment 24.12 23.80 22.68 22.99 22.65 22.63 22.55 22.16 22.95
+TFD 24.54 24.15 23.02 23.11 22.43 22.79 22.60 22.13 23.10

RRDB [32] 23.74 23.36 22.33 22.59 22.47 22.17 22.29 21.95 22.61
+Dropout (p = 0.5) 24.02 23.87 22.54 22.83 22.58 22.59 22.45 22.10 22.87

+Alignment 24.70 24.35 22.91 23.21 22.80 22.76 22.71 22.21 23.21
+TFD 24.72 24.37 23.49 23.27 22.85 22.89 22.75 22.25 23.32

SwinIR [23] 24.53 24.25 23.46 23.14 22.53 22.73 22.59 22.20 23.18
+Dropout (p = 0.5) 24.57 24.19 23.53 23.18 22.73 22.71 22.65 22.22 23.22

+Alignment 24.65 24.28 23.53 23.29 22.87 22.79 22.81 22.28 23.31
+TFD 24.96 24.60 23.56 23.23 22.70 22.83 22.69 22.30 23.36

B
SD

10
0

SRResNet [20] 23.06 22.99 22.45 22.48 22.26 22.34 22.22 22.05 22.48
+Dropout (p = 0.7) 23.31 23.26 22.50 22.69 22.25 22.50 22.41 22.16 22.64

+Alignment 23.83 23.64 22.77 23.04 22.53 22.79 22.62 22.32 22.94
+TFD 23.87 23.71 22.67 22.96 22.36 22.78 22.52 22.29 22.89

RRDB [32] 23.38 23.32 22.09 22.73 22.39 22.47 22.42 22.15 22.62
+Dropout (p = 0.5) 23.59 23.66 22.68 22.86 22.53 22.71 22.52 22.28 22.85

+Alignment 24.59 24.54 23.47 23.67 22.85 23.21 22.97 22.54 23.48
+TFD 24.11 24.05 23.13 23.19 22.74 22.95 22.69 22.41 23.15

SwinIR [23] 23.91 23.83 23.27 23.04 22.61 22.82 22.61 22.34 23.05
+Dropout (p = 0.5) 23.90 23.87 23.30 23.08 22.68 22.80 22.64 22.33 23.08

+Alignment 24.04 23.96 23.40 23.15 22.77 22.98 22.76 22.40 23.18
+TFD 24.14 24.06 23.50 23.27 22.84 23.05 22.84 22.57 23.28

U
rb

an
10

0

SRResNet [20] 21.24 21.06 20.82 20.60 20.46 20.30 20.43 20.10 20.63
+Dropout (p = 0.7) 21.57 21.25 20.85 20.90 20.48 20.49 20.66 20.22 20.80

+Alignment 21.94 21.65 21.19 21.20 20.73 20.72 20.91 20.37 21.09
+TFD 22.28 21.89 21.20 21.30 20.52 20.84 20.87 20.33 21.15

RRDB [32] 21.57 21.18 19.61 20.93 20.57 20.40 20.74 20.24 20.66
+Dropout (p = 0.5) 21.89 21.75 19.92 21.12 20.53 20.70 20.84 20.33 20.89

+Alignment 22.29 21.95 20.21 21.40 20.76 20.85 21.03 20.38 21.11
+TFD 22.44 22.13 21.66 21.45 20.99 20.93 21.09 20.53 21.40

SwinIR [23] 22.18 21.90 20.56 21.32 20.89 20.79 20.98 20.45 21.13
+Dropout (p = 0.5) 22.27 21.99 20.67 21.38 20.92 20.91 20.96 20.55 21.21

+Alignment 22.34 22.07 20.69 21.48 21.02 20.98 21.12 20.53 21.28
+TFD 22.63 22.31 21.61 21.47 20.95 20.93 21.08 20.55 21.44

M
an

ga
10

9

SRResNet [20] 18.42 18.75 18.32 18.30 18.60 18.53 18.25 18.43 18.45
+Dropout (p = 0.7) 18.98 19.12 18.52 18.66 18.94 18.85 18.66 18.72 18.81

+Alignment 19.18 19.46 19.90 19.02 19.27 19.17 18.98 19.01 19.25
+TFD 19.22 19.52 18.98 18.96 19.14 19.11 18.83 18.92 19.09

RRDB [32] 18.59 18.64 18.30 18.41 18.83 18.43 18.38 18.41 18.50
+Dropout (p = 0.5) 18.73 19.03 18.72 18.60 19.15 18.81 18.59 18.71 18.79

+Alignment 19.40 19.61 18.96 19.24 19.43 19.31 19.12 19.15 19.28
+TFD 19.28 18.64 19.09 19.05 19.21 19.09 18.84 18.91 19.01

SwinIR [23] 19.10 19.27 18.71 18.95 19.07 19.02 18.79 18.80 18.96
+Dropout (p = 0.5) 19.15 19.30 18.83 19.03 19.12 18.98 18.75 18.84 19.00

+Alignment 19.24 19.45 18.98 19.28 19.37 19.35 19.15 19.12 19.24
+TFD 19.20 19.37 19.34 18.91 19.17 19.12 18.89 18.90 19.34


