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1. More Implementation Details

Training Data Composition. The complete list of used
datasets in training is presented in Tab. 1. For the datasets
with overlapping, we select the disjoint samples during
training, such as ViP-LLaVA-Instruct and LLaVA-150k.

Task Datasets # Samples

Image Segmentation

Semantic Seg.

ADE20k [28] 20.2k
COCO-Stuff [3] 118.3k
Pascal-Part [5] 4.3k
PACO-LVIS [18] 4.6k

Referring Seg.

RefCOCO+ [8] 17k
RefCOCO [8] 22k
RefCOCOg [15] 17k
RefCLEF [8] 18k

Reasoning Seg. ReasonSeg [10] 0.2k

Video Segmentation

VOS YoutubeVOS [19] 3.5k
Ref-Youtube-VOS [19] 3.5k

Referring VOS MeViS [7] 1.6k
Ref-DAVIS [9] 5.3k

Reasoning VOS ReVOS [21] 0.6k

Image QA

VQA LLaVA-150k [13] 150k
Osprey-Conv [24] 30k

Referring VQA Osprey-Desc [24] 60k
ViP-LLaVA-Instruct [4] 216k

Video QA

VideoQA

LLaVA-Video-OE [27] 960k
LLaVA-Video-MC [27] 196k
NeXT-QA-OE [20] 17k
NeXT-QA-MC [20] 17k
ActivityNetQA [23] 24k
PerceptionTest [16] 2.4k

Referring VideoQA VideoInfer (Ours) 20k

Table 1. The detailed list of training datasets. For some datasets,
we only use a subset of them, such as LLaVA-Video, Osprey, and
ViP-LLaVA. The sampling rate is listed in the training script.

Training Details. We utilize the dynamic resolution for
Qwen2.5-VL [1] models, the max pixels of videos are set
as 320×28×28 for 8 frames, and the max pixels of a sin-
gle image are set as 1280×28×28. Images exceeding the
above max pixels will be resized while maintaining their
aspect ratio to fit.
Evaluation Protocols. The results of MeViS val and Ref-
YouTube-VOS are evaluated through the online server. On
VideoRefer-BenchQ, our method processes 16 input frames.
For VideoInfer, we utilize GPT-4o-2024-11-20 to evaluate

Accuracy (Acc.) and Score, following the same prompt
strategy as Video-ChatGPT [14]. To evaluate region-feature
based models, we convert the visual prompt (RGBA image)
into the mask according to the alpha channel and then input
the mask with visual input and question into these models
to generate the response.

2. More Experimental Results
2.1. Quantitative Results

Method Perception Test [16] MVBench [12] NExT-QA [20]

Generalist Models
LLaVA-OV-7B [11] - 56.7 79.4
VideoLLaMA2.1-7B [6] 54.9 57.3 75.6
LLaVA-Video-7B [27] 67.9 58.6 83.2

Specialist Models
Artemis [17] 47.1 34.1 -
VideoRefer-7B [25] 56.3 59.6 -

RGA3-7B (Ours) 68.7 63.8 75.3

Table 2. Comparison on general video question-answering tasks.

Results on General VideoQA Benchmarks. In addition
to the referring video question-answering benchmarks, we
also evaluate our architecture on general VideoQA QA tasks
without visual prompts as inputs, through the LMMs-Eval
toolkit [26]. As shown in Tab. 2, our model is compara-
ble to popular general VideoQA models while possessing
the ability to perform interactive referring and grounding in
object-centric scenarios.

val test

Method overall short query long query overall

gloU cloU gloU cloU gloU cloU gloU cloU

LISA-7B [10] 52.9 54.0 40.6 40.6 49.4 51.0 47.3 48.4
LISA-13B [10] 56.2 62.9 44.3 42.0 54.0 54.3 51.7 51.1
VISA-7B [21] 52.7 57.8 - - - - - -
VideoLISA-3.8B [2] 61.4 67.1 43.8 42.7 56.9 57.7 53.8 54.4
LISA++-7B [22] 64.2 68.1 49.6 51.1 59.3 61.7 57.0 59.5

RAG3-3B (Ours) 65.4 68.5 58.5 54.2 62.3 65.8 61.4 63.3
RAG3-7B (Ours) 68.7 70.2 58.7 54.1 68.5 72.1 66.1 68.3

Table 3. Comparision on validation and test set of ReasonSeg [10]
for image-level reasoning object segmentation.

Results on Image Segmentation Benchmarks For im-
age segmentation evaluation, we utilize gIoU (average per-
image IoUs) and cIoU (cumulative intersection over union)
on reasoning-based benchmark ReasonSeg [10] and cIoU
for referring-based benchmark refCOCO(+/g) [8, 15]. As
shown in Tab. 3, RGA3-7B outperforms the state-of-the-art



Method refCOCO [8] refCOCO+ [8] refCOCOg [15]

val testA testB val testA testB val(U) test(U)

LISA-7B [10] 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.5
VISA-7B [21] 72.4 75.5 68.1 59.8 64.8 53.1 65.5 66.4
VideoLISA-3.8B [2] 73.8 76.6 68.8 63.4 68.8 56.2 68.3 68.8

RGA3-3B (Ours) 78.9 81.1 75.0 71.3 77.1 63.5 74.7 75.0
RGA3-7B (Ours) 79.7 82.6 76.0 73.5 78.6 67.0 76.2 75.9

Table 4. Comparison on image-level referring object segmentation
datasets.

method LISA++-7B [22] on the ReasonSeg benchmark by
a large margin. Moreover, on general image semantic seg-
mentation benchmarks, such as refCOCO, RGA3-7B still
outperforms recent MLLM-based methods, which indicates
the strong general grounding ability of RGA3.
Robustness in Extremely Long Videos. Our work primar-
ily addresses object-centric video tasks, which typically in-
volve short video durations (e.g., VideoRefer-BenchQ com-
prises a few-second clips sourced from DAVIS or MeVIS).
Although our VideoInfer incorporates longer clips (sub-
minute duration) from LVOS and TAO, we acknowledge the
necessity for robustness in ultra-long video. Due to the lack
of appropriate benchmarks, we evaluated RGA3 on the val-
idation set of the LongVideoBench with different duration
groups:

Duration (8s, 15s] (15s, 60s] (180s, 600s] (900s, 3600s]

Accuracy 72.5 70.9 57.3 46.3

Table 5. Performance on the validation set of LongVideoBench.

More Ablations. The improvement over the previous state-
of-the-art methods on video referring segmentation and
question-answering is mainly from the base MLLM, the
proposed STOM module, and the dataset composition in
training. Additionally, we find that under the current train-
ing strategy, the performance of the individual task will de-
crease compared to training separately in most cases. We
think this should be further addressed through multi-stage
training or more diverse prompting.

Model Training Data MLLM Size Modules VideoRefer ReasonVOS

Acc. J&F
VideoRefer QA SigLIP-Qwen2 7B - 71.9 -
VideoLISA Seg Phi-3-V 3.8B SAM - 45.1

Ours

Seg

QwenVL-2.5

3B SAM - 47.9
Seg 3B SAM2 - 48.7

Seg+QA 3B SAM2 62.3 51.7
Seg+QA 3B SAM2 +STOM 66.6 51.7
Seg+QA 7B SAM2 +STOM 74.0 53.6

Table 6. Additional ablations on the design choices.

2.2. Failure Case and Future Work
In practice, due to computational limitations, we restrict
RGA3’s input to 16 frames per video (Other existing object-

Q: What ‘s the emotion of him?

GT: After hearing the reports, he took off his sunglasses and stared at the other person, from which we 
could infer that man is surprised and angry.

Pred: The man might feel angry because he is being held captive or is in a situation where he is being 
threatened or humiliated.

Figure 1. Failure case on VideoInfer dataset. The frames with grey
masks are not selected as input to RGA3. The green box frames
the video content which the man on the left reports something to
the man on the right. ‘GT’ is the ground truth, and ‘Pred’ is the
prediction of RGA3.

centric VideoLLMs also suffer from this limitation). How-
ever, in very long videos, this frame selection introduces
large temporal gaps, potentially omitting critical contextual
information. Our VideoInfer dataset introduces videos that
contain over 1,000 frames, yet the existing models can not
process the whole sequence due to computational limita-
tions. For instance, as shown in Fig. 1, the raw video con-
tains over 1,000 frames, yet only 16 frames are used as in-
put. With such sparse frame sampling, the model struggles
to capture a coherent sequence of events.
In this specific case, the moment when the left person re-
ports to the right person is skipped, leading to an incorrect
prediction. This issue cannot be naively addressed by ex-
tracting just one or a few visual tokens per frame, as object-
level information must be preserved across frames to en-
able accurate object-centric reasoning. Therefore, handling
long-form object-centric video reasoning remains a chal-
lenging open problem, particularly in transforming spatial
and temporal detailed object-centric information into a rea-
sonable number of tokens. We plan to explore solutions
further to enhance object-centric reasoning in long videos
in our future work.

3. Discussion and Visualizations

3.1. Potential Information Loss

The STOM module blends prompts onto original frames
with transparency through alpha blending, so that the ob-
jects will not be completely occluded, and the features can
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Figure 2. Visualization of statistics of the test split of VideoInfer.

be reserved.

3.2. Visualization of VideoInfer Benchmark
As shown in Fig. 2, we visualize the statistics of the test
split in VideoInfer. The questions range from 3 to 50 words
in length, with an average of 8.4 words. Answers vary be-
tween 1 and 75 words, averaging 8.7 words. The number of
frames per sample spans from 7 to over 2000, with a mean
of 189.5 frames. For objects, the count ranges from 1 to 8,
averaging 2.3 objects of interest per video.
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