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1. PTQ for SRResNet
We further extend the comparison with PTQ methods using
the SRResNet network. The results, presented in Table 1,
show that our method consistently achieves the best perfor-
mance across all datasets and settings.

Method FT W / A
Set5 Set14 BSD100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SRResNet [4] - 32/32 32.06 0.892 28.50 0.779 27.52 0.735 25.86 0.779
SRResNet-MSE [1] × 6 / 6 31.40 0.885 27.93 0.770 27.07 0.727 25.40 0.766
SRResNet-MinMax [3] × 6 / 6 31.75 0.883 28.27 0.769 27.32 0.726 25.59 0.765
SRResNet-Percentile [5] × 6 / 6 19.60 0.803 19.07 0.693 20.30 0.676 17.40 0.682
SRResNet-PTQ4SR [6] ✓ 6 / 6 31.79 0.885 28.35 0.773 27.40 0.729 25.66 0.768
SRResNet-AdaBM [2] ✓ 6 / 6 31.79 0.885 28.37 0.773 27.41 0.729 25.68 0.769
SRResNet-Ours ✓ 6 / 6 31.91 0.888 28.42 0.775 27.45 0.731 25.71 0.772
SRResNet-MSE [1] × 4 / 4 25.07 0.820 23.99 0.704 24.10 0.669 21.42 0.681
SRResNet-MinMax [3] × 4 / 4 28.78 0.819 26.51 0.708 26.09 0.666 23.77 0.679
SRResNet-Percentile [5] × 4 / 4 19.47 0.774 19.03 0.662 20.19 0.642 17.28 0.637
SRResNet-PTQ4SR [6] ✓ 4 / 4 31.08 0.868 27.96 0.757 27.06 0.711 25.06 0.739
SRResNet-AdaBM [2] ✓ 4 / 4 31.43 0.877 28.04 0.763 27.16 0.718 25.24 0.749
SRResNet-Ours ✓ 4 / 4 31.47 0.880 28.16 0.767 27.25 0.722 25.33 0.754

Table 1. Performance comparison between PTQ methods using
SRResNet, with a scale factor of 4.

2. Additional qualitative results
We provide additional visual comparisons of PTQ methods
using EDSR and SRResNet networks in Figures 1 and 2.
The results demonstrate that our method achieves perfor-
mance comparable to that of a full-precision model. For
EDSR, as shown in Figure 1, our method effectively pre-
serves details while maintaining robustness to noise. For
SRResNet, as illustrated in Figure 2, both PTQ4SR [6] and
AdaBM [2] introduce noticeable noise, particularly on re-
gions such as the white wall in the first row. In contrast, our
method effectively suppresses noise while maintaining high
visual fidelity.
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Figure 1. Visual comparison between different PTQ methods with the EDSR network under W4A4 setting.



Figure 2. Visual comparison between different PTQ methods with the SRResNet network under W4A4 setting.
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