
PacGDC: Label-Efficient Generalizable Depth Completion
with Projection Ambiguity and Consistency

Supplementary Material

6. More Implementation Details
Training Details. Zero-shot Depth Completion: The train-
ing data simply concentrate all available training datasets
following [50, 51], without any explicit balancing strategies
as in [82]. Due to resource constraints, the training res-
olution is set to 320×320, though higher resolutions could
further enhance performance, as observed in image analysis
tasks [24, 59].

Due to the challenges posed by our highly diverse
data setting, we modify the 2×2 convolutions in the
up/downsampling layers of SPNet to 3×3 convolutions, as
odd-sized kernels generally provide better stability [60].
This modification results in a slight increase in computa-
tional cost, as shown in Tab. 8. Notably, “Ours-T” even
outperforms “SPNet-L” while requiring half the inference
time and only 17% of the parameters.

Additionally, we impose a constraint that the mini-
mum number of sparse depth pixels during training is two.
This allows us to simplify the absolute term in the G2-
MonoDepth loss [50] to L1 loss. The updated loss function
L, which measures the discrepancy between predictions d̃
and our pseudo depth labels d̂, is expressed as follows:
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where T is the standardize operation with mean deviation in
[50]. The function ρr is the nearest neighbor interpolation
at the 1/2r resolution. ∇ is the Sobel gradient in height and
width directions. η denotes the number of valid pixels in
dense labels.

Few-shot Depth Completion: In our few-shot experi-
ments, we do not employ additional refinement strategies,
such as SPN-like modules [7, 29, 45, 54] or depth enhance-
ment methods [48, 49]. This ensures that our model retains
SPNet’s efficiency. The training resolution is set to a ran-
domly cropped 256×1216. The loss function is updated
to the commonly used L1+L2 loss, following the standard
practice in most intra-domain learning methods [54, 55, 78].
Testing Details. The details of the test datasets are provided
in Tab. 7. For the uniform sampling experiment, test images
are resized to a height of 320 pixels. In the sensor-captured
experiment, the VOID and KITTI datasets follow standard
protocols, with VOID maintaining its original resolution of

Datasets Indoor Outdoor Label Size

ETH3D [40] ✓ ✓ Laser 454
Ibims [20] ✓ Laser 100
NYUv2 [42] ✓ RGB-D 654
DIODE [46] ✓ ✓ Laser 771
Sintel [3] ✓ ✓ Synthetic 1064
KITTI [11] ✓ Stereo 1000
VOID [58] ✓ ✓ RGB-D 800

Table 7. The details of test datasets.

Method Speed↑ Param.↓ Memo.↓ RMSE↓ MAE↓
(Image/s) (M) (MB) (mm) (mm)

SPNet-T 126.6 35.0 330 2342 857
Ours-T 121.8 39.7 242 2143 792

SPNet-L 60.2 235.5 1176 2271 791
Ours-L 58.7 254.4 1246 1966 731

Table 8. The inference costs under “Tiny” (T) and “Large” (L)
configurations, including speed, parameters, and memory usage.
Notably, the results of “Ours-T” are copied from the ablation study
only using 25% training data (in gray).

480×640 and KITTI using a bottom center-cropped resolu-
tion of 256×1216. The final results on KITTI are obtained
by averaging predictions from both original and horizon-
tally flipped inputs following implementations in [54, 55].

7. More Quantitative Results
Zero-shot Depth Completion on DDAD Dataset. We fur-
ther evaluate PacGDC on the DDAD [12] dataset, compar-
ing to more generalizable and supervised baselines, follow-
ing the standard protocol of VPP4DC [1]. The baseline
results are directly taken from relevant papers. As shown
in Tab. 9, the results further validate the effectiveness of
PacGDC for zero-shot generalization.

Method RMSE ↓ MAE ↓ Method RMSE ↓ MAE ↓
BP-Net [45] 8903 2712 Marigold-DC [47] 6449 2364
VPP4DC [1] 10247 2290 DMD3C [23] 6609 1842
OGNI-DC [81] 6876 1867 Ours 5918 1140

Table 9. Zero-shot depth completion on DDAD dataset under
VPP4DC protocol.

Few-shot Comparison with Other Baselines. We supple-
ment Tab. 4 with additional few-shot baselines. The base-



line results on KITTI validation set are directly taken from
their original papers. As shown in Tab. 10, the results fur-
ther demonstrate the superiority of our model in few-shot
depth completion.

Method Shot RMSE ↓ MAE ↓ iRMSE ↓ iMAE ↓
DepthPrompt [32] 100 1798 602 - -
Ours 100 911 229 2.54 0.96

DDPMDC [35] 11000 966 291 3.63 1.48
Ours 1000 830 220 2.28 0.91

Table 10. Few-shot depth completion on KITTI with 64 line Li-
DAR, supplementing Tab. 4.

In-Domain Evaluation on the KITTI Dataset. We fur-
ther conduct standard in-domain evaluation by fine-tuning
the pre-trained zero-shot PacGDC model on the entire
KITTI training set (i.e., 86K samples). As presented in
Tab. 11, despite adopting a plain backbone without spe-
cialized components such as spatial propagation networks
(SPNs), PacGDC delivers competitive performance on the
KITTI validation set, comparable to recent state-of-the-art
methods. Moreover, we submit the results of the fully fine-
tuned model to the official KITTI test set leaderboard.

Method Plain RMSE ↓ MAE ↓ iRMSE ↓ iMAE ↓
BEV@DC [79] 720 187 1.88 0.80
TPVD [68] 719 187 - -

BEV@DC [79] ✓ 762 198 2.06 0.86
TPVD [68] ✓ 764 198 - -
UniDC [30] ✓ 824 209 - -
Ours ✓ 759 203 2.06 0.85

Table 11. In-domain evaluation on KITTI validation set.

8. More Ablation Study
Different Depth Foundation Models. We evaluate
our approach with four different depth foundation mod-
els: DepthAnything (DA) [69], DepthPro [2], DepthAny-
thingV2 (DAV2) [70], and DistillAnyDepth (DistillAD)
[14]. As shown in Tab. 12, PacGDC consistently yields
performance improvements over the baseline (without
PacGDC), further validating the generality and effective-
ness of our method.

It is worth noting that this experiment was newly intro-
duced in response to reviewer feedback. Accordingly, our
”Large” model continues to use DA and DepthPro, as re-
ported in Tab. 6, rather than the combination of DA, Depth-
Pro, and DAV2 used in Tab. 12.

9. More Visual Results
Zero-Shot Depth Completion. We further provide visual
examples of zero-shot scenarios in Fig. 8, covering a range

DA [69] DepthPro [2] DAV2 [70] DistillAD [14] RMSE ↓ MAE ↓
2484 990

✓ 2277 857
✓ ✓ 2241 854

✓ ✓ 2243 852
✓ ✓ 2276 859

✓ ✓ ✓ 2232 848
✓ ✓ ✓ ✓ 2279 874

Table 12. Ablation study on different depth foundation models.
Results with our data synthesis pipeline are shaded in gray.

of datasets and sparsity levels: DIODE with 1% sparsity,
ETH3D with 10% sparsity, KITTI with 4-line LiDAR, and
VOID with 1500 feature points derived from a VIO system.
Across these scenarios, characterized by diverse scene se-
mantics, varying scales, and different forms of depth spar-
sity, PacGDC consistently achieves higher accuracy in pre-
dicting metric depth maps compared to existing baselines.
Few-Shot Depth Completion. Visual results for few-shot
scenarios are presented in Figs. 9 and 10, using models
trained with 1, 10, 100, and 1000 samples. To provide a
comprehensive analysis, we also separately showcase re-
sults for 8-, 16-, 32-, and 64-line LiDAR inputs under
the same few-shot training settings. Leveraging the strong
pre-trained weights from our synthesis pipeline, our model
demonstrates significant qualitative improvements over in-
domain learning baselines across all levels of supervision.



Figure 8. Zero-shot depth completion on unseen scenarios with different scene semantics/scales and depth sparsity/patterns.



Figure 9. Few-shot depth completion on KITTI with 8- and 16-lines LiDAR, using models trained with 1 and 10 samples, respectively.



Figure 10. Few-shot depth completion on KITTI with 32- and 64-lines LiDAR, using models trained with 100 and 1000 samples,
respectively.
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