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7. Theoretical Analysis of ProSAM and VRP-
SAM

In this section, we present a formal analysis that reveals a
deep connection between variational optimization, noise in-
jection, and regularization. As already explained in Sec-
tion 4.2, by using the reparameterization trick, variational
optimization is accomplished by adding noise to the prompt
embeddings during training. In the subsequent section, we

demonstrate that adding noise to the prompt embeddings
is mathematically equivalent to incorporating a regulariza-
tion term that penalizes the Laplacian of the loss function.
This equivalence not only provides a rigorous justification
for our method but also elucidates how the induced flatness
in the loss landscape enhances the robustness and general-
ization of the model.

7.1. Equivalence of Noise Injection and Laplacian
Regularization

Proposition 1. Let f : Rn → R be a twice continuously
differentiable function and let ω ↑ Rn be an i.i.d. distributed
random noise vector satisfying

E[ω] = 0 and E[ω ωT ] = ε2I,

where I is the n↓n identity matrix and ε > 0 is sufficiently
small. Then, for any point z ↑ Rn,

Eω

[
f(z + ω)

]
= f(z) +

ε2

2
!f(z) +O(ε3),

where the Laplacian !f(z) is defined as

!f(z) =
n∑

i=1

ϑ2f

ϑz2i
(z).

The formal proof of Proposition 1 can be found in Sec-
tion 7.4.

Corollary 1. Assuming the O(ε3) term is negligible, mini-
mizing Eω[f(z + ω)] is equivalent to minimizing

f(z) +
ε2

2
!f(z).

Mapping Corollary 1 to Variational Prompt Distribu-
tion Optimization in ProSAM. In ProSAM, we optimize a
variational prompt distribution qε(z | Ir,Mr, It) using the
reparameterization trick, where the sampled prompt embed-
ding is expressed as

z = µz + ω,

with ω being a noise vector satisfying

E[ω] = 0 and E[ω ωT ] = ε2I.

The segmentation loss is defined as

L
(
fM
S (z, F I

S(It)),Mt

)
,



which measures the deviation between the predicted mask
fM
S (z, F I

S(It)) and the ground truth mask Mt. By applying
Corollary 1 to this loss function, we obtain

Eω

[
L
(
fM
S (z, F I

S(It)),Mt

)]
(11)

↔ L
(
fM
S (µz, F I

S(It)),Mt

)
+ ϑ2

2 !L
(
fM
S (µz, F I

S(It)),Mt

)
. (12)

This shows that minimizing the expected loss over the noisy
prompt embeddings is equivalent to minimizing the stan-
dard segmentation loss plus an additional regularization
term that penalizes the Laplacian (i.e., the curvature) of the
loss with respect to the prompt embedding z at z = µz .

7.2. The Robustness of ProSAM by Penalizing
Laplacian

In this section, we explain why penalizing the Laplacian of
the loss enhances the robustness of ProSAM. Following the
conclusion in Section 7.1, injecting noise into the prompt
embeddings during training is more than just a method for
sampling from a variational distribution—it acts as an im-
plicit regularizer that penalizes the Laplacian of the loss.
Near local minima, small Laplacian indicates lower curva-
ture, which is characterized by the Hessian matrix

↗2L(µz)

of the loss function L with respect to the prompt embedding
z, evaluated at the mean prompt µz . The overall curvature
is then quantified by the trace of the Hessian, namely the
Laplacian,

!L(µz) = Tr
(
↗2L(µz)

)
=

n∑

i=1

ϖi,

where ϖi are the eigenvalues of ↗2L(µz). Near a local min-
imum, where the segmentation loss is minimized, the loss
function is typically convex or locally convex, ensuring that
all eigenvalues satisfy ϖi ↘ 0. Consequently, the Laplacian
!L(µz) is nonnegative. Under this constraint, minimizing
the Laplacian strictly leads to lower overall curvature. Fol-
lowing the conclusion from Section 7.1, when noise ω with
variance ε2 is added, the Laplacian is implicitly penalized,
which effectively encourages the optimization process to fa-
vor flat minima over high curvature regions. For ProSAM,
this is crucial because a flat loss landscape implies that the
predicted mean prompt µz is robust to small perturbations,
thereby enhancing the stability and generalization of seg-
mentation performance, particularly on novel objects.

7.3. The Limitation of VRP-SAM Without Lapla-
cian Regularization

In VRP-SAM, the prompt encoder is optimized solely by
minimizing the segmentation loss:

L(µz) = L
(
fM
S (µz, F

I
S(It)),Mt

)
,

where µz is the learned prompt embedding, fM
S denotes the

SAM mask decoder, F I
S(It) is the image feature extraction,

and Mt represents the ground truth mask. This objective
ensures that the generated mask is close to the target mask
but does not explicitly encourage the embedding µz to re-
side in the low-curvature area of the target prompt region
RIr,Mr,It . As a result, the learned embedding may end up
in an area where the loss function exhibits high curvature.

As explained in Section 7.2, the curvature at the embed-
ding µz is characterized by the Hessian ↗2L(µz) of the loss
function, and its trace, the Laplacian !L(µz) can be large
if µz is near a boundary or a sharp region of the loss land-
scape. Without a regularization term that penalizes this cur-
vature—such as the additional term 1

2ε
2 !L(µz) obtained

via noise injection—the optimizer is not explicitly guided to
find flatter regions. Consequently, small perturbations in the
embedding can lead to significant increases in loss, making
the model more sensitive to noise and less robust. This sen-
sitivity is particularly problematic when segmenting novel
objects, where the embedding must generalize well to un-
seen variations. Hence, the absence of Laplacian regular-
ization in VRP-SAM can result in unstable prompt embed-
dings and degraded segmentation performance.

7.4. Mathematical Proofs
Proof. Step 1. Taylor Expansion
Since f is twice continuously differentiable, we can write
the second-order Taylor expansion of f(z + ω) about the
point z:

f(z + ω) = f(z) +↗f(z)T ω+
1

2
ωTHf (z)ω+R(ω) (13)

, where
• ↗f(z) is the gradient of f at z,
• Hf (z) is the Hessian matrix of f at z,
• R(ω) is a remainder term of order O(≃ω≃3).

Step 2. Taking the Expectation
Taking the expectation with respect to ω, we obtain:

Eω

[
f(z+ω)

]
= Eω

[
f(z) +↗f(z)T ω+

1

2
ωTHf (z)ω+R(ω)

]
.

Since f(z) is constant and Eω[ω] = 0, we have:

Eω

[
f(z + ω)

]
= f(z) +

1

2
Eω

[
ωTHf (z)ω

]
+O(ε3). (14)

Step 3. Evaluating the Quadratic Term
Express the quadratic form as:

ωTHf (z)ω =
n∑

i=1

n∑

j=1

Hf (z)ij ωi ωj .

Taking the expectation, we have:

Eω

[
ωTHf (z)ω

]
=

n∑

i=1

n∑

j=1

Hf (z)ij Eω[ωi ωj ].



Given that Eω[ωi ωj ] = ε2 if i = j and 0 otherwise, it fol-
lows that:

Eω

[
ωTHf (z)ω

]
= ε2

n∑

i=1

Hf (z)ii = ε2 Tr(Hf (z)).

Recall that the Laplacian of f is defined as:

!f(z) = Tr(Hf (z)) =
n∑

i=1

ϑ2f

ϑz2i
(z).

Step 4. Final Expression
Substituting the evaluated quadratic term into our expecta-
tion, we obtain:

Eω

[
f(z + ω)

]
= f(z) +

1

2
ε2 !f(z) +O(ε3).

This completes the proof.

7.5. Advantage of Student-t over Gaussian
Following Equation 14, we observed that the second-order
Taylor terms of E[L(z+ ω)] are identical for any zero-mean
noise with covariance ε2I . Third-order terms also vanish
because the noise distributions are symmetric and have zero
odd moments. The distinction appears first in the fourth-
order term, which depends on the fourth central moment

m4 = E[ω4i ].
For a Gaussian N (0,ε2), one has

mN
4 = 3ε4,

whereas for a Student–t with ϱ > 4 degrees of freedom,
scaled to variance ε2,

mt
4 =

3 ϱ

ϱ ⇐ 4
ε4 > 3ε4.

Recalling that the fourth-order correction in the expected
loss is

1

24

∑

i,j,k,ϖ

ϑ4L

ϑziϑzjϑzkϑzϖ
(z)E[ωiωjωkωϖ],

and that only index-pairings (i = j = k = ς) and (i =
j ⇒= k = ς) survive, the larger m4 of the Student–t directly
amplifies the contribution

m4

24

∑

i

Qiiii +
3ε4

24

∑

i →=j

Qiijj ,

where Qijkl = ϱ4L
ϱziϱzjϱzkϱzω

. Consequently, Student–t
noise imposes a strictly stronger fourth-order “push” against
high curvature than Gaussian noise, driving the mean
prompt deeper into flatter regions of the loss landscape and
yielding greater empirical robustness.

8. Model Architecture

In this section, the model architecture of our variational
prompt encoder is described in detail. For a fair and
straightforward comparison, our variational prompt encoder
closely follows the model architecture of VRP-SAM [32]
(see Section 3.2). As shown in Figure 5, our variational
prompt encoder is composed of two major components: fea-
ture augmentation and prompt distribution prediction.

8.1. Feature Augmentation

In this component, the visual features of the reference im-
age Ir and the target image It are augmented and enhanced
with reference annotations Mr. First, both the reference
image Ir and the target image It are encoded into FIr and
FIt using a frozen pre-trained image encoder fI followed
by a learnable pointwise convolutional layer. To obtain a
reference annotation embedding FMr , the reference image
embedding FIr within the annotated region Mr is fed into
an average pooling layer. Next, FMr is concatenated with
both the reference image embedding FIr and the reference
annotation Mr in a pointwise manner, and then transformed
by another pointwise convolutional layer to produce the fi-
nal enhanced reference feature F v

r . To obtain the enhanced
target feature F v

t , a pseudo-mask of target image Mpseudo
t

is generated by evaluating the pixel-wise similarity map
through the comparison of high-level features of reference
and target image. Then, the similarity map is normalized
into [0,1] and serves as the pseudo mask Mpseudo

t for the
target image. Similarly, the enhanced target feature F v

t is
obtained by transforming a concatenation of Mpseudo

t , FMr

and FIt with a learnable pointwise convolution layer.

8.2. Prompt Distribution Prediction

Given the enhanced reference feature F v
r and target fea-

ture F v
t , a variational prompt distribution qε(z|Ir,Mr, It)

is predicted via attention mechanisms. First, a set of learn-
able queries Q ↑ Rm↑c is initialized and interacted with
the reference feature F v

r through a cross-attention layer and
a self-attention layer, to generate query vectors Q↓

r ↑ Rm↑c

containing information about the object to be segmented.
These query vectors Q↓

r then interact with the target feature
F v
t via another cross-attention layer and a subsequent self-

attention layer to produce the prompt features Q↓
t ↑ Rm↑c.

Finally, two linear transformation heads are employed to
predict the mean µ̂z and standard deviation ω̂z of the vari-
ational prompt distribution qε(z|Ir,Mr, It), respectively.
For the quantitative comparison against VRP-SAM with
two linear layers appended at the end of prompt encoder,
please refer to Section 10.2.



Figure 5. The detailed model architecture of ProSAM. The only trainable module in ProSAM is the variational prompt encoder, which
is composed of two components: feature augmentation and prompt distribution prediction. Specifically, the feature augmentation aims to
extract the enhanced reference and target feature to guide the learning of prompt distribution. The prompt distribution prediction module
is responsible for predicting the variational prompt distribution to guide the SAM in mask generation for the target images.

9. Additional Verification Study

In addition to the studies presented in Section 5.3, we also
designed a verification study that does not require training
a deep learning model, allowing for a direct comparison be-
tween the underlying principles of the variational and non-
variational prompt encoders.

Specifically, given the pre-trained SAM mask decoder
and SAM image encoder, we learn the prompt embedding
or variational prompt distribution via gradient descent for a
given object (i.e., image-mask pair). To learn the prompt
embedding via gradient descent, the gradient ϱL

ϱz will be
computed and used to directly update z, which is treated
as a parameterized vector rather than being predicted by the
prompt encoder. Similarly, to learn the multivariate prompt
distribution, the gradient ϱL

ϱµ̂z
and ϱL

ϱω̂z
will be utilized to

update the parameterized vector µ̂z and ω̂z . Essentially, the
learned prompt embedding reflects the fundamental princi-
ples of a non-variational prompt encoder (e.g., VRP-SAM),
while the learned prompt distribution captures the core prin-
ciples of a variational prompt encoder (e.g., ProSAM).

For the experiment of learning prompt embedding, we
ran 200 experiments to generate 200 prompt embeddings.
The initial prompt embeddings are randomly drawn from
the normal distribution with a mean of 0 and a standard de-
viation of 25, and the loss function is formulated as the same
loss function as VRP-SAM (see Equation 4). For the exper-
iment of learning variational prompt distribution, we learn a
single multivariate prompt distribution following the same
formulation and reparameterization trick in Equation 5 and
Equation 7 via gradient descent, given the loss function pre-
sented in Equation 10. For both experiments, the gradient

descent optimization process is stopped when the loss value
does not improve by more than 0.0003 over 100 consecu-
tive epochs. For other experimental settings not mentioned
above, we follow the same practice as in Section 5.1.

The visualization results on a sample image are pre-
sented in Figure 6. First, from Figure 6(b), we can see
that both VRP-SAM and ProSAM are able to generate faith-
ful prompts with IoU close to 0.96 and BCE close to zero.
Notably, the prompt embeddings sampled from our varia-
tional prompt distribution consistently perform better than
at least 75% of 200 prompt embeddings learned by VRP-
SAM, with higher IoU and lower BCE value. From the
scatter plot of projected prompt embeddings via t-SNE [34]
in Figure 6(c), we can observe that the prompts sampled
from our variational prompt distribution are clearly clus-
tered in the center, while solely learning a single observa-
tion of prompt embeddings lie in the boundary of our vari-
ational prompt distribution. This observation assures that
the proposed variational prompt encoder can indeed pro-
duce more robust prompts that are closer to the center of
the target prompt region RIr,Mr,It , compared with the non-
variational prompt encoder employed by VRP-SAM.

10. Additional Quantitative Evaluations
To thoroughly assess the effectiveness of ProSAM, more
quantitative evaluations have been conducted and presented
here due to the page limit. First, we analyze our confusion
matrix compared with VRP-SAM confusion matrix in Sec-
tion 10.1 for a detailed comparison. Secondly, to conduct
a fair comparison against VRP-SAM with the same num-
ber of parameters as ours, we present an ablation study on
VRP-SAM with two linear layers appended in Section 10.2.



2D Projection of Prompt Embeddings

(a) (c)(b)

Target Image and GT Mask Boxplot for IoU and BCE

Figure 6. The visualization of the learned prompt embeddings by VRP-SAM and our method through gradient descent. For a sample image
from COCO-20i presented in Figure (a), we analyze the generated prompt embeddings and their associated mask predictions in Figure
(b) and (c). Specifically, in Figure (b), the IoU (left y-axis) and BCE (right y-axis) are computed between the predicted masks and the
ground-truth mask. In Figure (c), the 2D projection of prompt embeddings via t-SNE is visualized.

Additionally, an ablation study on different inference strate-
gies has been conducted in Section 5.4. Lastly, we present
more quantitative results on different choice of image en-
coder in Section 10.3. Again, similar to the results pre-
sented in Section 5, the experimental results presented here
for both VRP-SAM and our method are conducted under
identical experimental settings to ensure a fair comparison.

10.1. Confusion Matrix Comparison with VRP-
SAM

As demonstrated in Section 5.2, we have outperformed the
state-of-the-art method VRP-SAM on both COCO-20i and
PASCAL-5i (see Table 1), and surpassed VRP-SAM under
the significant domain shift from COCO-20i to PASCAL-
5i (see Table 3). The question is whether ProSAM will
potentially suffer from a greater false negative rate (FNR)
while predicting a mean prompt that is more aligned with
the center of target prompt region RIr,Mr,It (defined in Sec-
tion 4.2). The detailed evaluations of ProSAM and VRP-
SAM on True Positive Rate (TPR), True Negative Rate
(TNR), False Positive Rate (FPR), and False Negative Rate
(FNR) have been presented in Table 8. As you can see,
for every fold in PASCAL-5i, ProSAM can obtain a higher
TPR and TNR in terms of pixel-level accuracy, while reduc-
ing the FPR and FNR systematically.

10.2. VRP-SAM with Same Number of Parameters
as ProSAM

As described in Section 5.1 and Section 8, the major differ-
ence in our model architecture compared with VRP-SAM
is that we append two linear layers at the end of the vari-
ational prompt encoder to predict the mean and variance
of the prompt distributions. Therefore, ProSAM has more
learnable parameters resulting from these two linear lay-
ers. To conduct a fair comparison under the same number
of learnable parameters, we trained a VRP-SAM with two

Table 8. A detailed comparison of ProSAM predictions with VRP-
SAM predictions. At here, the True Positive Rate (TPR), True
Negative Rate (TNR), False Positive Rate (FPR), and False Nega-
tive Rate (FNR) have been computed for both ProSAM and VRP-
SAM predictions on PASCAL-5i.

Methods Metrics PASCAL-5i

F-0 F-1 F-2 F-3
ProSAM TPR(%) 78.47 68.97 66.97 66.37

VRPSAM 78.14 68.21 65.88 64.39
ProSAM TNR(%) 11.55 19.91 17.82 16.74

VRPSAM 11.54 19.89 17.22 16.67
ProSAM FPR(%) 9.21 9.5 12.75 14.13

VRPSAM 9.53 10.25 13.84 16.12
ProSAM FNR(%) 0.78 1.62 2.46 2.75

VRPSAM 0.78 1.64 3.05 2.82

linear layers appended at the end of their prompt encoder
while keeping other experimental settings the same. From
Table 9, we can see that appending two linear layers at the
end of VRP-SAM prompt encoder fails to boost the VRP-
SAM performance. In other words, with the same number
of learnable parameters, ProSAM still surpasses VRP-SAM
by a large margin.

Table 9. A quantitative comparison against VRP-SAM with the
exactly same number of learnable parameters as ours. To be spe-
cific, 2 linear layers have been appended at the end of VRP-SAM
prompt encoder to ensure identical model architecture as ours (see
the second row below).

Methods Metrics PASCAL-5i

F-0 F-1 F-2 F-3
ProSAM

mIOU(%)
75.26 77.57 70.29 65.22

VRPSAM+2Linear 74.04 76.55 69.71 63.98
VRPSAM 74.01 76.77 69.46 64.34



10.3. Choices of Image Encoder
In addition to ResNet-50 [7] and DINOv2 [26], we also ex-
perimented on adopting VGG-16 [31] as the image encoder.
From Table 10, we can see that ProSAM with VGG-16
surpasses VRP-SAM with VGG-16 for all different folds.
Also, for both VRP-SAM and ProSAM, the performance
with VGG-16 generally performs worse than the perfor-
mance with ResNet-50. This indicates that ResNet-50 can
extract more accurate semantic-aware visual features and
thereby enable ProSAM to learn better prompts.

Table 10. The quantitative evaluations of ProSAM with different
image encoders such as ResNet-50 and VGG-16.

Methods Image
Encoder

PASCAL-5i

F-0 F-1 F-2 F-3 Mean

VRP-SAM ResNet-50 74.01 76.77 69.46 64.34 71.14
VGG-16 69.72 74.74 67.12 61.84 68.35

ResNet-50 75.26 77.57 70.09 65.22 72.04ProSAM VGG-16 70.53 75.30 68.25 62.99 69.27

11. Qualitative Evaluations
To qualitatively evaluate the effectiveness of ProSAM, we
first present a qualitative comparison with VRP-SAM on
COCO-20i in Figure 7, then showcase the generalizability
of ProSAM on diverse image styles in Figure 8 and lastly
demonstrate our capability of handling challenging cases in
Figure 9.

11.1. Qualitative Comparison with VRP-SAM
After a thorough qualitative analysis of masks generated by
ProSAM and VRP-SAM across multiple datasets, we ob-
served a general trend: our generated masks are less prone
to artifacts, such as small holes or disconnected regions,
which often appear in the masks produced by VRP-SAM.

For example, in Figure 7, VRP-SAM predictions on
”car” and ”banana” exhibit many small holes and pixelated
artifacts in the masked region, whereas our predictions are
consistently more robust with fewer pixelated artifacts. One
key reason is that the mean prompts of our learned prompt
distribution are more robust and precise than prompts pre-
dicted by VRP-SAM because our mean prompts are en-
couraged to be more closely aligned with the center of the
target prompt region during the training. Thus, the masks
generated by our mean prompts have higher quality. It is
also interesting to see that VRP-SAM masks tend to have
more false positives, which is consistent with our findings
in Section 10.1. Taking ”car” and ”clock” in Figure 7 as
examples: VRP-SAM wrongly perceives the road as ”car”;
the entire spire is incorrectly predicted as ”clock” by VRP-
SAM. However, by taking advantage of the robustness of

our predicted mean prompts, our mask predictions on ”car”
and ”clock” are accurate and precise with much fewer false
positives. For ”fork”, VRP-SAM not only predicts more
false positives but also wrongly treats other silverware (e.g.,
spoon and knife) as a ”fork”, while we generate a more ac-
curate mask for ”fork” by leveraging a more optimal prompt
encoder.

11.2. Generalizability on Diverse Image Styles
To evaluate the generalizability of ProSAM on images with
novel and unseen styles, we conducted experiments on im-
ages featuring complex scenes and diverse styles. Specif-
ically, both reference images and target images were col-
lected from the internet, and the reference annotations were
curated by prompting SAM with bounding boxes. As
demonstrated in Figure 8, even though the model is trained
on general-style images only (COCO-20i), ProSAM can
consistently generate high-quality masks with precise and
clean boundaries, regardless of whether the target images
are artistic paintings or photorealistic scenes. The ability
to maintain such performance, even across vastly different
image styles, is particularly impressive, as it requires no re-
training or fine-tuning of the model. This strongly high-
lights the zero-shot segmentation capability of ProSAM in
open-world scenarios.

11.3. Capability of Handling Challenging Cases
In image segmentation, certain challenging scenarios often
cause segmentation methods to fall short. One such chal-
lenge arises when target objects have irregular shapes and
non-uniform boundaries, which can lead to artifacts along
object edges. Another common difficulty occurs when an
image contains multiple target objects, as some objects may
be overlooked, either receiving no masks or being assigned
low-quality masks.

To better showcase our capability in understanding vi-
sual references and handling these challenges, we present
qualitative results for these two scenarios in Figure 9.
The visualization results demonstrate that ProSAM effec-
tively generates high-quality masks even in the presence
of complex shapes and multiple target objects. A key rea-
son behind this strong performance is that our variational
prompt encoder jointly learns multiple prompt distributions
to guide SAM, enabling it to capture both non-uniform ob-
ject boundaries and multiple objects within a scene. For
example, in Figure 9, even though the motorcycle has an
irregular boundary, our predictions accurately capture its
complexity, producing a high-quality mask. Additionally,
for the target images containing 15 goats, ProSAM suc-
cessfully detects and segments all of them, demonstrating
its robustness in handling multiple target objects.



Figure 7. Qualitative comparison between VRP-SAM and ProSAM on COCO-20i.



Figure 8. Qualitative results of ProSAM (trained on COCO-20i) across diverse image styles. Both the reference images and target images
were collected from the internet.



Visual Reference

Complex
Shape

Multiple
Objects

Our Predictions Visual Reference Our Predictions

Figure 9. Qualitative results of ProSAM on two famous challenging cases including segmenting objects with irregular shape and segment-
ing multiple target objects.
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