
1. Parameter Details
Similar to DHOT and PIHOT, we use ResNet-50 as our

feature extractor. During training, we freeze the SAM,
depth model, and text encoder, while training the image en-
coder and image decoder. The learning rate for both the
encoder and decoder is set to 5e-5. We use the AdamW op-
timizer with a weight decay of 1e-4. The batch size is set
to 4 per GPU, and the model is trained for 200 epochs. For
data augmentation, we randomly crop the input images to
224×224, and apply random flipping, random noise addi-
tion, and other transformations. In Eq. 21, α, β, and γ are
set to 0.3, 0.1, and 1.0, respectively. The network is opti-
mized using the AdamW optimizer. The batch size is set to
4 per GPU. The experimental environment is Ubuntu 20.04,
equipped with 8 NVIDIA A6000 (48GB) GPUs. PyTorch
version is 1.11.0, torchvision version is 0.12.0, and Python
is 3.8.19.

2. Stronger encoder
To ensure a fairer comparison, we follow the design of

DHOT and PIHOT by using ResNet-50 as the encoder. Of
course, our method can also be trained with more powerful
encoders. We tested the Swin-L encoder on a 4× A100 GPU
server, and the results are summarized in Table 1. It is ev-
ident that using a more powerful encoder further improves
the performance.

Encoder SC-Acc. C-Acc. mIoU wIoU AD-Acc.
ResNet-50 46.0 74.9 25.6 30.2 42.3
Swin-Large 48.0 78.1 27.8 31.5 46.3

Table 1. Performance comparison of different encoders.

3. Inference time
The comparison of inference time between our proposed

model and the two latest HOT methods is summarized in
Table 2. DHOT has an inference time of 181ms, primar-
ily due to its use of post-processing with weighted outputs
during prediction. PIHOT is the slowest, with an inference
time of 208ms, as it employs an object restoration model.

In contrast, our proposed method achieves an inference
time of 91ms, with the main computational cost coming
from the text-prompted segmentation model. Furthermore,
if we replace the segmentation framework in our pipeline
with a faster model, such as YOLOv8, the inference speed
improves significantly to 26ms, albeit with a slight loss in
accuracy.

4. Ablation studies
For each component of RJLoss, namely Local Joint Loss

and Global Joint Loss, we conducted an ablation study, as

model DHOT PIHOT ours
time(ms) 181 208 91(26)

Table 2. Inference time of three methods on HOT-Annotated
dataset.

shown in Table 3. The baseline setup uses only CE + BE
loss, where CE represents cross-entropy loss, and BE refers
to binary cross-entropy loss, which is used for computing
the image-text similarity loss. It is evident that incorporat-
ing either Local Joint Loss or Global Joint Loss improves
accuracy. When both are used together, i.e., when applying
RJLoss, the results achieve the best performance.

ResNet-50 SC-Acc. C-Acc. mIoU wIoU AD-Acc.
CE+BE 44.5 72.3 23.8 28.3 40.1

CE+BE+Local 45.1 73.8 24.2 28.7 40.7
CE+BE+Gloal 44.9 74.0 23.9 28.8 41.0

CE+BE+RJLoss 46.0 74.9 25.6 30.2 42.3

Table 3. Performance comparison of different loss.
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Figure 1. Qualitative results of our contact predictor and DHOT.

5. Visualization
When looking at the second and fourth columns in Figure

1, it becomes apparent that the DHOT method struggles to
understand the spatial connection between individuals and
objects. Certain non-contact areas are mistakenly catego-
rized as contact areas. The DHOT model does not accu-
rately determine the positions of the boy, the mountain, and
the giraffe, resulting in inaccurate detection outcomes (third
row). Our predictor can perceive the relationships between
the three and accurately detect the actual contact area be-
tween the boy and the giraffe. This difference may be due
to our proposed human proximal perception mechanism,
which can dynamically perceive key depth range around the
human. This further demonstrates that the proposed method
is better at understanding the relationships between objects
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如图xx所示，⼦图(a)和(b)分别表示输⼊图像和对应的ground truth，(c)和(d)分别表示两种预测结果。
在ground truth中，⼈体的右⼿与物体发⽣了接触，接触部分的像素点被标为了9。当将所有像素点都
预测成⼀个成⼀个⾮0的值时，如⼦图(c)，我们发现C-Acc.值为100，这显然是不对的。因此我们提出了
⼀种新的评价指标AD-Acc.来代替C-Acc..我们发现在⼦图(c)的情况下AD-Acc.值趋近于0，这样才是正确的。
当且仅当预测图与Ground Truth相等时，也就是⼦图(d)，两个指标才都为100。因此，通过⼦图(c)和(d)的
可视化说明，可以直观的观察到我们所提出的AD-Acc.指标是正确的。
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Figure 2. Illustrative diagram of the C-Acc. issue.
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Figure 3. Visualization of text attention.

and more effectively avoids misjudgments caused by visual
illusions.

6. Regarding τ

Ideally, τ should be adjustable for each image. However,
in our previous attempts, we found that learning a single
parameter for each image was difficult. Instead, we learn a
general parameter that can adapt to the majority of images.
This approach simplifies the training process while optimiz-
ing the model performance at the dataset level. Moreover,
experimental results have confirmed that this method yields
promising results.

7. Text Prompt

In the main text, the text prompt template used in the text
encoder is “A [body part] of the human body is in contact
with an object.” By replacing [body part] with the corre-
sponding body part, we obtain the specific text prompts.
However, this template is not fixed. We also tested other
templates, such as “A [body part] touches an object.” We
found that the results remained unaffected. Since both sen-
tences effectively describe the contact between body parts
and objects. We believe that any text prompt template con-
veying this information should work similarly. Of course,
the template should not be too long, as excessive length may
reduce the sensitivity to key information.



8. Text attention

In the main text, our proposed framework utilizes an im-
age encoder and a text encoder to compute text-image sim-
ilarity, which provides attention to the features in the image
decoder. Additionally, the image encoder and text encoder
are trained using the image-text matching loss (BE, binary
cross-entropy loss) introduced in the main text. To intu-
itively assess the effectiveness of this module, we visualize
the text attention, as shown in Figure 3.

The Figure 3 presents heatmaps illustrating the attention
distribution across different body parts for five different test
cases. Each row corresponds to a distinct scenario where
specific body parts receive higher attention, represented
by warmer colors (red). The x-axis labels indicate vari-
ous body regions (e.g., “Head”, “Left Upper Arm”, “Right
Foot”), while the numbers inside each cell denote the con-
fidence scores assigned to each region. The ground truth
(GT) labels indicate the target regions expected to receive
attention. The visualization highlights how our model ef-
fectively focuses on relevant body parts in accordance with
the given task, demonstrating its ability to capture meaning-
ful spatial relationships.

9. Issues with the C-Acc. Metric.

C-Acc. denotes the accuracy of classifying pixels on the
human body, which is a binary classification. When com-
puting C-Acc., the predicted background pixels are first
set to 0, while the predicted foreground pixels (i.e., hu-
man body parts) are set to 1. Then, the overlap is cal-
culated based on the nonzero pixel regions in the ground
truth. However, if the entire image is predicted as the fore-
ground, C-Acc. will always be 100, regardless of whether
the predicted contact categories are correct or whether back-
ground pixels are incorrectly classified as foreground. This
is clearly incorrect.

As shown in Figure 2, subfigures (a) and (b) represent
the input image and the corresponding ground truth, respec-
tively, while (c) and (d) illustrate two different prediction
results. In the ground truth, the right hand of the human
body is in contact with an object, and the pixels in the con-
tact region are labeled as 9. When all pixels are predicted
as a nonzero value, as in subfigure (c), we observe that the
C-Acc. value is 100, which is clearly incorrect. To address
this issue, we propose a new evaluation metric, AD-Acc.,
to replace C-Acc.. We find that in the case of subfigure (c),
the AD-Acc. value approaches 0, which is the correct out-
come. Only when the predicted map exactly matches the
ground truth, as in subfigure (d), do both metrics reach 100.
Therefore, the visualization of subfigures (c) and (d) intu-
itively demonstrates the correctness of our proposed AD-
Acc. metric.

9.1. Limitations and Future Directions

At present, the proposed method has some limitations,
specifically, it is only applicable for analyzing 2D images
and has not been expanded to learn 3D human-object inter-
action trends from 2D images. Furthermore, the method’s
performance may decline when both people and objects are
obstructed. In our upcoming research, we will address these
challenges and investigate possible enhancements.

Several potential development directions have been con-
sidered to overcome these limitations. One method involves
creating a single multi-task learning model that combines
human segmentation, depth estimation, and HOT predic-
tion, improving the method’s strength and precision by op-
timizing all tasks together. Another potential avenue is to
develop a new HOT detection system designed for live 3D
video feeds, with the ability to anticipate HOT connections
in more complex environments. Furthermore, implement-
ing better methods for dealing with obstructions, such as
integrating more detailed contextual information or utiliz-
ing techniques for combining multiple perspectives, could
improve accuracy in challenging surroundings. In gen-
eral, these instructions are designed to address existing con-
straints and enhance the use of HOT prediction in real-life
situations.


	. Parameter Details
	. Stronger encoder
	. Inference time
	. Ablation studies
	. Visualization
	. Regarding 
	. Text Prompt
	. Text attention
	. Issues with the C-Acc. Metric.
	. Limitations and Future Directions


