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Supplementary Material

The supplementary material is organized as follows:
Sec. 6 provides comparison with TFMQ-DM; Sec. 7 pro-
vides comparison on the low-resolution dataset; Sec. 8
provides the proof and detailed analysis for Theorem 3.2;
Sec. 9 presents additional examples of the imbalanced dis-
tributions across different models; Sec. 10 highlights the
importance of the large values in activations; Sec. 11 offers
further generated examples from our method across varying
bit-widths; and Sec. 12 discusses limitations and broader
considerations.

6. More Baseline Comparisons
We further compare with TFMQ [16] below:

Bedroom W8A8 W4A8

TFMQ-DM 3.14 3.68
QuEST 3.03 3.26

ImageNet W8A8 W4A8

TFMQ-DM 10.79 10.29
QuEST 10.43 8.48
Table 9. Comparing TFMQ.

We also supplement the metrics for Table 3:

W8A8 sFID → IS ↑

QDiffusion 8.19 2.25
PTQD 9.89 2.25

EfficientDM N/A N/A
Ours 6.86 2.27

W4A4 sFID → IS ↑

QDiffusion N/A N/A
PTQD N/A N/A

EfficientDM 15.15 2.27
Ours 7.82 2.26

Table 10. Additional metrics on LSUN-Bedrooms. “N/A” repre-
sents generation failure.

7. Low-resolution dataset comparison
We further include experiments on CIFAR10 in Tab. 11.

W8A8 W4A4

Q-Diffusion 3.75 N/A
EfficientDM 3.75 10.48

QuEST 3.71 9.37
Table 11. FID comparison on CIFAR10.
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Figure 5. Illustrations of imbalanced activation distributions
on conditional LDM4 (ImageNet 256↓256) and unconditional
LDM4 (LSUN-Bedrooms 256↓256).

8. Proof for Theorem 3.2
We provide the detailed proof for Theorem 3.2 here. The
notations are consistent with the ones in the main paper.

Since the perturbation ! is too large for accurate Taylor
expansion, we can resolve it by introducing a new pertur-
bation ω = !/K, where we divide ! by a constant K so
that ω is small enough for approximation. Then, Eq. (8) is
rewritten as follows:
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where the approximation step follows Taylor expansion and
only the first two main components are kept. The first
term in Eq. (11) cannot be ignored because samples such
as zn,t + (i ↑ 1)ω may not be included in the learned dis-
tribution of the model. The second term can still be mini-
mized by reconstruction since only the difference between
quantized model output and ground-truth matters. In the
following, we temporarily exclude the second term for sim-
plicity since it can always be minimized through aligning
the activation outputs.
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Figure 6. Comparison of different corruptions made on different tokens.

Given the objective function (MSE loss) of diffusion
models, we analyze that:
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where wn is the weight for layer n, z̃in→1,t is the activa-
tion of the (n ↑ 1)th layer in a quantized model to get
zn,t + (i ↑ 1)ω. Ground-truth zn,t can be approximated
by the full-precision output zFP. We see that z̃in→1,t and
zFP cannot be changed, thus to minimize Eq. (12), we need
to finetune wn. From a general perspective, Eq. (12) also
indicates that the model has not converged well to a local
minimum given the perturbed inputs, thus when we finetune
the model layers given the quantized inputs, we are actually
training the model towards convergence over new samples
and increasing its robustness.

9. Examples of Imbalanced Activation Distri-
butions

Apart from Fig. 2, we show that the imbalance in the ac-
tivation distribution is a common phenomenon in different
model structures and datasets. In Fig. 5, we show more re-

sults of activation distributions of latent diffusion models on
ImageNet 256 → 256 and LSUN-Bedrooms 256 → 256.

10. Importance of large values in activations

As shown in Fig. 2, quite a few values are rather large and
diversely distributed. These values pose difficulties on acti-
vation quantization, and being rather important and not neg-
ligible. To demonstrate this, we corrupt certain tokens in the
activation outputs of the diffusion model and check the cor-
responding generated images. The corruption is done by
setting the token values as all zeros. As shown in Fig. 6, we
compare two settings: (1) corrupt a certain number of to-
kens randomly; (2) corrupt the same number of the tokens
with the largest values.

We see that when corrupting randomly, generation per-
formance is hardly effected. However, corrupting the same
amount of tokens (even only one token) with the largest val-
ues leads to significantly degenerated images.

11. More generated image examples

11.1. Unconditional Image Generation

The generated images for LSUN-Bedrooms 256→256 under
different bit-widths are shown in Fig. 7. Images for LSUN-
Churches 256→256 are shown in Fig. 9.
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Figure 7. Unconditional image generation examples for LSUN-
Bedrooms 256↓256.
11.2. Class-conditional image generation
Fig. 10 shows the generated images for 3 different classes.

11.3. Text-to-image generation
Fig. 8 shows the generated images using Stable Diffusion
v1.4 under different bit-width.

FP W8A8

W4A8 W4A4

Prompt: Impressionist landscape of a Japanese garden in Autumn, with a bridge over a koi pond.

FP W8A8

W4A8 W4A4

Prompt: A cozy cabin nestled in a snowy forest with smoke rising from the chimney.

Figure 8. Text-to-image generation results on Stable Diffusion.

12. Limitations and Broader Impacts
The primary objective of this paper is to further the research
in enhancing the efficiency of diffusion models. While
it confronts societal consequences akin to those faced by
research on generative models, it is important to recog-
nize the potential impacts that quantized models could have
on current techniques, including watermarking and safety
checking. Inappropriate integration of current methodolo-
gies may result in unforeseen performance issues, a factor
that deserves attention and awareness.
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Figure 9. Unconditional image generation examples for LSUN-
Churches 256↓256.
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Figure 10. Conditional image generation results for ImageNet
256↓256.
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