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1. Analysis of Regenration-based Optimization
strategy

To demonstrate why this optimization can yield better in-
version results, we analyze a single step of the forward and
inversion process. Specifically, we first generate xt−1 from
xt and then apply DDIM inversion to approximately recon-
struct x′

t from xt−1. By combining Eq. 4 and Eq. 6 of the
submitted paper, we derive the difference between the ap-
proximate reverse representation x′

t and the ground truth xt

as follows:

x′
t − xt =

φt

γt
{w[ϵθ(xt, t, C)− ϵθ(xt, t, ∅)]

+ ϵθ(xt, t, ∅)− ϵθ(xt−1, t, ∅)}.
(1)

We further denote the optimized latent representation as x∗
t ,

aiming to bring it closer to the original xt. Based on the
optimization objective, x∗

t is constrained to ensure that it
can generate xt−1 in a single step:

xt−1 = γtx
∗
t + φtϵθ(x

∗
t , t, ∅). (2)

Thus, the difference between the optimized reverse repre-
sentation x∗

t and the ground truth xt is given by:

x∗
t − xt =

φt

γt
{w[ϵθ(xt, t, C)− ϵθ(xt, t, ∅)]

+ ϵθ(xt, t, ∅)− ϵθ(x
∗
t , t, ∅)}.

(3)

By comparing Eq. 1 and Eq. 3, we observe that the rela-
tionship between ∥x∗

t − xt∥ and ∥x′
t − xt∥ can be analyzed

through the magnitudes of ∥ϵθ(xt, t, ∅) − ϵθ(x
∗
t , t, ∅)∥ and

∥ϵθ(xt, t, ∅)− ϵθ(xt−1, t, ∅)∥.
Furthermore, we hypothesize that ϵθ(x, t, ∅) exhibits lo-

cal linearity within a small neighborhood around xt. This
assumption follows from the discrete nature of both com-
putation and the underlying noise schedule, as suggested
in prior works on first-order ODE solvers [7]. Similar
linearization assumptions have been commonly adopted in
diffusion-based generative models [4, 6], where the learned
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Figure 1. Histogram between ∥xt − x∗
t ∥ and ∥xt − xt−1∥

noise prediction function is observed to behave smoothly in
local regions. Under this assumption, the comparison can
be further transformed into analyzing the relative magni-
tudes of ∥xt − x∗

t ∥ and ∥xt − xt−1∥.
Based on the above analysis, we empirically conducted

statistical experiments to measure the Euclidean distances
between xt and its approximations (x∗

t and x′
t) across dif-

ferent inversion steps and datasets. As consistently demon-
strated in Fig. 1, the results show that ∥xt − x∗

t ∥ is signifi-
cantly smaller than ∥xt − xt−1∥, supporting our claim that
the optimization process effectively reduces inversion error
and improves reconstruction accuracy.

2. The implementation details of compared
baseline methods

We compare ROAR with eight state-of-the-art generative
model watermarking frameworks, categorized into three
groups. For all methods, we utilize their officially released
open-source implementations and configure the watermark
parameters based on their respective specifications.

(1) Image watermarking-based methods, including
DwtDct[2], DwtDctSvd [2] and RivaGAN [10]. We utilize
the implementation provided in an open-source repository1.
The watermark capacity is set to 256 bits for DwtDct and
DwtDctSvd, while RivaGAN is limited to its maximum ca-

1https://github.com/ShieldMnt/invisible-watermark

1
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pacity of 32 bits.
(2) Fine-tuning-based methods, including Stable Signa-

ture [3] and LaWa [5]. We adopt the open-source code of
Stable Signature2, setting the watermark capacity to 48 bits.
Similarly, we use the publicly available code for LaWa3,
also setting the capacity to 48 bits.

(3) Inversion-based methods, Tree-Ring [8], RingID
[1], and Gaussian Shading (GS) [9]. For Tree-Ring4, the
detailed parameters are w channel=0, w pattern=‘ring’,
w radius=10, with only 1-bit watermark. For
RingID5, the detailed parametes are ring width=1,
quantization levels=2, ring value range=64. For GS6,
the detailed parameters are f c=1, f hw=8, l=1, with an
watermark capacity of 256 bits.

3. TPR calculation with multi-bits methods
To calculate the TPR of multi-bits methods, we adopt the
same TPR calculation method proposed by GS[9], which
can be described as follows: Assume the watermark to be
embedded is w ∈ {0, 1}k where k is the length. For the
image to be detected x, we can extract the watermark wx

from the x and calculate the bit accuracy of wx, noted as
Acc(wx, w). Then a threshold τ is applied to make a deci-
sion: if

Acc(wx, w) ≥ τ,

x is regarded as watermarked. In this form, τ is set based
on a required estimated false positive rate (FPR), which
is defined as the probability that Acc(wx′ , w) of a non-
watermarked image x′ exceeds the threshold τ . Such a
probability can be further calculated with regularized in-
complete beta function Bx(a; b)[3]:

FPR(τ) = P (Acc (wx′ , w) > τ) =
1

2k

k∑
i=τ+1

(
k

i

)
= B1/2(τ + 1, k − τ).

Detail analysis of the TPR calculation can be found in [9].
Shortly, to calculate the TPR, we first set an FPR (e.g.

10−10 in this paper). Then according to the set FPR, we
can determine a threshold τ with the embedded watermark
length k. The image with extraction bit accuracy larger than
τ is regarded as watermarked.

4. Details of Comparison Experiments
We provide detailed results of true positive results and bit
accuracy results for each distortion in Table 1 and Tab.

2https://github.com/facebookresearch/stable signature
3LaWa Official Code
4https://github.com/YuxinWenRick/tree-ring-watermark
5https://github.com/showlab/RingID
6https://github.com/bsmhmmlf/Gaussian-Shading

2. The distortions we tested are: JPEG, QF=25; 60%
area Random Crop (RandCr); 80% area Random Drop
(RandDr); Gaussian Blur r = 4 (GauBlur); Median Fil-
ter, k = 7 (MedFilter); Gaussian Noise, µ = 0, σ = 0.05
(GauNoise); Salt and Pepper Noise, p = 0.05 (S&P Noise);
25% Resize and restore (Resize); Brightness, factor = 6.

From the observed results, most of the compared meth-
ods struggle to maintain high extraction accuracy and true
positive detection rates under distortion scenarios. In con-
trast, under detection conditions, our method achieves an
average TPR exceeding 0.999, outperforming Tree-Ring,
RingID, and GS by 14.15%, 10.35% and 8.2%, respectively.
In the traceability scenario, our approach improves the aver-
age bit accuracy compared to GS by 9.98%, demonstrating
its robustness and effectiveness.

5. Details of Adaptive Attack Experiments
In Section 5.3, we discuss the adaptive attack on the pro-
posed methods. We believe that a successful attack should
meet two requirements: 1). the visual consistency where
the attacked images should be similar to the original image.
2). the watermark cannot be detected in the attacked im-
ages. We adopt two types of adaptive attacks, including re-
construction attack and purification attack. Notably, exper-
imental results from Table 2 in the submitted paper demon-
strate that our method exhibits high robustness against re-
construction attacks. However, it faces challenges when
subjected to a potential purification attack, where the at-
tacker introduces random noise into the watermarked im-
age and then applies a diffusion process to remove both the
noise and the watermark. Our experiments show that the
proposed method is robust to such attacks with s = 0.05 to
0.3, but got a performance decrease in the face of stronger
distortion. Here, we give the visual results of the purifica-
tion attack, as shown in Fig. 2. It can be seen that when s is
small (e.g. σ = 0.05), the attacked image maintains a high
similarity to the original image. However, with the increase
of s, the appearance of the attacked images changes a lot,
especially when s = 0.7, both the detail and the structure of
the image change a lot. Although such a process can erase
the watermark, it fails to meet the requirements of visual
consistency. Besides, from Table 2 in submitted papers we
can see that, even under s = 0.3, the watermark can still be
detected/extracted, which indicates the certain robustness of
the proposed scheme against purification attack.

6. Optimization Process of the Regeneration-
based Optimization Mechanism

Our proposed Regeneration-based Optimization Mecha-
nism begins by initializing the optimization process with the
latent representation obtained from DDIM inversion. This
latent representation is iteratively refined over 20 iterations

https://github.com/facebookresearch/stable_signature
https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=03ccae2a-4fa8-4739-a75b-659a3abcc690
https://github.com/YuxinWenRick/tree-ring-watermark
https://github.com/showlab/RingID
https://github.com/bsmhmmlf/Gaussian-Shading


Methods DwtDct DwtDctSVD RivaGAN Stable Signature LaWa Tree-Ring Tree-Ring-ROAR RingID RingID-ROAR GS GS-ROAR

JPEG 0.000/0.000 0.000/0.000 0.000/0.000 0.000/0.000 0.130/0.120 0.830/0.840 1.000/1.000 0.870/0.930 1.000/1.000 0.930/0.947 1.000/1.000
RandCr 0.890/0.870 1.000/1.000 0.680/0.680 0.870/0.860 0.000/0.020 0.970/0.973 1.000/1.000 0.965/0.967 1.000/1.000 0.982/0.981 1.000/1.000
RandDr 0.000/0.000 0.000/0.000 0.910/0.970 0.940/1.000 1.000/1.000 0.940/1.000 1.000/1.000 0.940/0.944 1.000/1.000 0.975/0.986 1.000/1.000
GauBlur 0.000/0.000 0.080/0.050 0.000/0.000 0.000/0.000 0.000/0.000 0.740/0.780 1.000/1.000 0.801/0.802 1.000/1.000 0.820/0.835 1.000/1.000
MedFilter 0.000/0.000 0.750/0.900 0.160/0.140 0.000/0.000 0.020/0.030 0.840/0.863 1.000/1.000 0.802/0.826 1.000/1.000 0.810/0.828 1.000/1.000
GauNoise 0.000/0.000 0.000/0.000 0.040/0.110 0.000/0.000 0.150/0.160 0.710/0.760 1.000/1.000 0.870/0.883 1.000/1.000 0.880/0.882 1.000/1.000
S&P Noise 0.000/0.000 0.000/0.000 0.010/0.010 0.000/0.000 0.050/0.050 0.730/0.789 1.000/1.000 0.862/0.879 1.000/1.000 0.860/0.874 1.000/1.000
Resize 0.000/0.000 0.985/0.983 0.850/0.887 0.000/0.000 0.000/0.000 0.940/1.000 1.000/1.000 0.940/0.952 1.000/1.000 0.972/0.983 1.000/1.000
Brightness 0.110/0.100 0.110/0.080 0.450/0.510 0.700/0.610 0.970/0.960 0.850/0.900 1.000/1.000 0.900/0.917 1.000/1.000 0.980/1.000 1.000/1.000

Avg. 0.111/0.108 0.325/0.335 0.344/0.367 0.279/0.274 0.258/0.264 0.839/0.878 1.000/1.000 0.894/0.899 1.000/1.000 0.912/0.924 1.000/1.000

Table 1. Comparison of different watermarking methods under various perturbations in terms of TPR for SD V1.4/2.1.

Methods DwtDct DwtDctSVD RivaGAN Stable Signature LaWa GS GS-ROAR

JPEG 0.4964/0.5030 0.4579/0.4537 0.5894/0.6006 0.5690/0.5710 0.7929/0.7910 0.9506/0.9563 0.9907/0.9900
RandCr 0.8650/0.8344 0.9988/0.9990 0.8931/0.9172 0.9404/0.9552 0.7485/0.7498 0.9907/0.9932 0.9989/0.9990
RandDr 0.5126/0.5061 0.4998/0.4996 0.9678/0.9906 0.9627/0.9938 1.0000/1.0000 0.9872/0.9896 0.9992/0.9993
GauBlur 0.4991/0.5067 0.5675/0.5608 0.5353/0.5309 0.3992/0.3967 0.5800/0.5827 0.7314/0.7347 0.9629/0.9634
MedFilter 0.4998/0.5111 0.7682/0.7791 0.7388/0.7469 0.4619/0.4704 0.7765/0.7763 0.7079/0.7134 0.9782/0.9784
GauNoise 0.4786/0.4702 0.5266/0.5285 0.7113/0.7428 0.5352/0.5419 0.7804/0.7902 0.8105/0.8275 0.9922/0.9909
S&P Noise 0.5033/0.5038 0.5059/0.5119 0.7016/0.7128 0.5365/0.5346 0.7469/0.7594 0.8277/0.8301 0.9924/0.9910
Resize 0.5067/0.5135 0.8743/0.8630 0.9602/0.9733 0.5067/0.5163 0.5567/0.5606 0.9796/0.9987 0.98180.9993
Brightness 0.5031/0.5091 0.5258/0.5124 0.8378/0.8328 0.9017/0.8835 0.9900/0.9850 0.9763/0.9991 0.9926/0.9912

Avg. 0.5405/0.5398 0.6361/0.6342 0.7706/0.7831 0.6459/0.6515 0.7747/0.7772 0.8847/0.8936 0.9887/0.9892

Table 2. Comparison of different watermarking methods under various perturbations in terms of bit accuracy for SD V1.4/2.1.

Watermarked Image S=0.05 S=0.1 S=0.3 S=0.5 S=0.7

Figure 2. Visualization of purification attack.



digital concept art of 
old wooden cabin in 
florida swamp, trending 
on artstation…

symmetrical portrait of 
a 2 5 year old girl, by 
karol bak, james jean, 
tom bagshaw, rococo, 
sharp focus, …

tetrachromia half -
machine woman with 
cute - fine - face, 
pretty face, 
multicolored hair, 

official Portrait of a 
smiling WWI admiral, 
male, cheerful, happy, 
detailed face…

Prompt Watermarked Image Regeneration by DDIM
Regeneration after 

Optimization Inversion Loss Curve

ultra realistic 
illustration, michael 
mando from last of us, 
intricate, elegant, 
highly detailed, …

a portrait of mario, 
cyberpunk!, fantasy, 
elegant, digital 
painting, artstation,…

Figure 3. Visualization of the optimization process of Tree-Ring. (a) The original watermarked image. (b) The image reconstructed from
the initial latent representation obtained via DDIM inversion. (c) The image reconstructed from the optimized latent representation (d) The
inversion loss variation during the optimization process.

to enhance the quality of the regenerated image. In Fig-
ure 3, 4 and 5, we illustrate the entire optimization process
of Tree-Ring, RingID and Gaussian Shading, respectively,
including (1) the original watermarked image, (2) the im-

age generated from the initial latent representation obtained
through DDIM inversion, (3) the image generated from the
optimized latent representation after 20 iterations, and (4)
the corresponding loss variation throughout the optimiza-



oil painting of 
holocaust LANDSCAPE, 
diffuse lighting, 
intricate, highly…

beautiful portrait of Irina 
Shayk wearing fantastic 
Hand-dyed cotton dress, 
embellished beaded…

Messi dunking on 
Ronaldo in basketball, 
D&D, fantasy, intricate, 
elegant, …

official Portrait of a 
smiling WWI admiral, 
male, cheerful, happy, 
detailed face…

Prompt Watermarked Image Regeneration by DDIM
Regeneration after 

Optimization Inversion Loss Curve

a portrait of mario, 
cyberpunk!, fantasy, 
elegant, digital 
painting, artstation, 
concept art, …

electric woman, cute 
- fine - face, pretty 
face, oil slick hair, 
realistic shaded…

Figure 4. Visualization of the optimization process of RingID. (a) The original watermarked image. (b) The image reconstructed from the
initial latent representation obtained via DDIM inversion. (c) The image reconstructed from the optimized latent representation (d) The
inversion loss variation during the optimization process.

tion process. This visualization demonstrates that the opti-
mized latent representation becomes more accurate and bet-
ter aligned with the original watermarked image.



symmetrical portrait 
of a 2 5 year old girl, 
by karol bak, james 
jean, tom bagshaw, 
rococo, sharp…

portrait of logan 
wolwerine, intricate, 
elegant, highly detailed, 
digital painting, …

the most amazing 
dream you ever had 
about singularity 
transhumance portal,…

portrait of a beautiful 
cyberpunk woman, 
sunglasses, shoulder 
long hair, cyberpunk, …

Prompt Watermarked Image Regeneration by DDIM
Regeneration after 

Optimization Inversion Loss Curve

a portrait of the happy 
mask salesman, human, 
ginger hair, art by lois 
van baarle and loish 
image...

a beautiful detailed 
line art sketch of an 
attractive female with 
long black hair…

Figure 5. Visualization of the optimization process of GS. (a) The original watermarked image. (b) The image reconstructed from the
initial latent representation obtained via DDIM inversion. (c) The image reconstructed from the optimized latent representation (d) The
inversion loss variation during the optimization process.
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