Rep-MTL: Unleashing the Power of Representation-level Task Saliency
for Multi-Task Learning

Supplementary Material

This supplementary material offers additional empirical
analyses, experimental results, and further discussions of
our work. The appendix sections are organized as follows:

* In Appendix A, we provide experimental setups and im-
plementation specifications across all four benchmarks
in this paper, including NYUv2 [59], Cityscapes [11],
Office-Home [62], and Office-31 [52]. This includes
comprehensive information on employed network archi-
tectures, optimization algorithms, training protocols, loss
functions, and hyper-parameter configurations.

* In Appendix B, we provide complete experimental results
on the Office-31 dataset, which were omitted from the
main manuscript due to space constraints. We also dis-
cuss the proposed Rep-MTL method combined with all
experimental results from four benchmarks.

* In Appendix C, we present additional ablation studies
through the lens of PL exponent alpha analysis [44, 46].
These studies further demonstrate how each mechanism
of Rep-MTL contributes to facilitating cross-task positive
transfer while preserving task-specific learning patterns,
thereby mitigating the negative transfer in MTL.

* In Appendix D, we conduct experiments to validate Rep-
MTL’s robustness and practical applicability, with par-
ticular emphasis on the sensitivity of hyper-parameters
Atsrs Aesa, learning rates, and its optimization speed.

A. Implementation Details

This appendix section provides an expansion of the experi-
mental configurations and implementation specifications of
the experiments from the main manuscript. We detail the
network architectures, optimizers, and training recipes for
each included benchmark to ensure reproducibility.

NYUv2 Dataset Following the implementations in pre-
vious studies [28, 30], we employ the DeepLabV3+ [5]
network architecture, containing a dilated ResNet 50 [17]
backbone pre-trained on ImageNet and the Atrous Spatial
Pyramid Pooling (ASPP) as task-specific decoders. The
MTL model is trained for 200 epochs using the Adam opti-
mizer with an initial learning rate of 10~ and weight decay
of 10~5. Consistent with prior works [28, 30], we imple-
ment a learning rate schedule where the rate is halved to
5 x 107° after 100 training epochs. For the three tasks on
NYUv2 [59], we utilize cross-entropy loss for semantic seg-
mentation, Ly loss for depth estimation, and cosine loss for
surface normal prediction. We adopted the same logarith-

mic transformation in previous studies [30, 34, 49]. During
training, all input images are resized to 288 x 384, and we
set the batch size to 8. The experiments are implemented
with PyTorch and executed on NVIDIA A100-80G GPUs.

Cityscapes Dataset The implementations for Cityscapes
benchmark demonstrate substantial alignment with the one
on NYUv2 [28, 30]. Specifically, we adopt the identi-
cal DeepLabV3+ [5] architecture, leveraging an ImageNet-
pretained dilated ResNet 50 network as the backbone,
while the ASPP module serves as task-specific decoders.
For model optimization, we establish a 200-epoch training
regime utilizing Adam optimizer, with the initial learning
rate of 10~ and weight decay of 107°. The learning rate
undergoes a scheduled reduction to 5 x 10~ upon reach-
ing the 100-epoch milestone. We maintain consistency of
loss functions with NYUv2: cross-entropy loss and L4 loss
are employed for semantic segmentation and depth estima-
tion, respectively. We also adopted the logarithmic transfor-
mation as in previous studies [30, 34, 49]. Throughout the
training process, all input images are resized to 128 x 256,
and we utilize a batch size of 64. The experiments are im-
plemented with PyTorch on NVIDIA A100-80G GPUs.

Office-Home Dataset Building upon established proto-
cols from prior works [28, 30], we implement an ImageNet-
pretrained ResNet-18 network architecture as the shared
backbone, complemented by a linear layer serving as task-
specific decoders. In pre-processing, all input images are
resized to 224 x 224. The batch size and the training epoch
are set to 64 and 100, respectively. The optimization process
employs the Adam optimizer with the learning rate of 10~
and the weight decay of 10~°. We utilize cross-entropy loss
for all classification tasks, with classification accuracy serv-
ing as the evaluation metric. We also adopted the logarith-
mic transformation as in previous studies [30, 34, 49]. The
”Avg.” reported in the main manuscript represents the mean
performance gains across three independent tasks, which is
notably excluded from the calculation of overall task-level
performance gains. The experiments are implemented with
PyTorch and executed on NVIDIA A100-80G GPUs.

Office-31 Dataset The configurations on Office-31 [52]
dataset exhibit notable parallels with the ones on Office-
Home [28, 30]. Concretely, we deploy a ResNet-18 net-
work architecture pre-trained on the ImageNet dataset as the
shared backbone, complemented by task-specific linear lay-
ers for classification outputs. The data processing pipeline



Table 5. Performance on Office-31 dataset with 3 diverse image
classification tasks. 1 indicates the higher the metric values, the
better the methods’ performance. The best and second-best results
of each metric are highlighted in bold and underline, respectively.

Method Amazon DSLR Webcam Avg.? ApgT
Single-Task Baseline 86.61 95.63 96.85 93.03 0.00
EW 83.53 97.27 96.85 92.554062 —0.6110.67
GLS [10] 82.84 95.62 96.29 91.594058 —1.6310.61
RLW [28] 83.82 96.99 96.85 92.5540.89 —0.5940.95
UW [22] 83.82 97.27 96.67 92.5840.81 —0.56+0.90
DWA [35] 83.87 96.99 96.48 92.4540 56 0.7010.62
IMTL-L [34] 84.04 96.99 96.48 92.5040.52 0.6310.58
IGBv2[12] 84.52 98.36 98.05 93.6440.26 +0.56+0.25
MGDA [13] 85.47 95.90 97.03 92.80-+0.14 0.2710.15
GradNorm [8] 83.58 97.26 96.85 92.56+0.87 0.5940.94
PCGrad [66] 83.59 96.99 96.85 92484053 —0.681057
GradDrop [9] 84.33 96.99 96.30 92.541042  —0.5940.46
GradVac [63] 83.76 97.27 96.67 92.57+073 —0.5840.78
IMTL-G [34] 8341  96.72 9648  92.204080 —0.9710.5
CAGrad [32] 83.65 95.63 96.85 92.04+0.79 1.1440.85
MTAdam [42] 85.52 95.62 96.29 92.48.10.87 0.6010.93
Nash-MTL [49] 85.01 97.54 97.41 93.3210.82  +0.2440.89
MetaBalance [19] 84.21 95.90 97.40 92.504028 —0.6310.30
MoCo [15] 84.33 97.54 98.33 93.39 -
Aligned-MTL [55] 83.36 96.45 97.04 92.28046 —0.9010.48
IMTL [34] 83.70 96.44 96.29 92144085 —1.0210.92
DB-MTL [30] 85.12  98.63 9851  94.09.,,0 +1.054020

Rep-MTL (EW) 85.93 98.54 98.67 94.38,1 053 +1.3140.58

standardizes input images to 224 x 224, while the training
protocol extends across 100 epochs with a fixed batch size
of 64. The Adam optimizer configured with a learning rate
of 10~* and the weight decay of 10~° is used. The cross-
entropy loss is used for all the tasks and classification accu-
racy is used as the evaluation metric. We adopted logarith-
mic transformation as in previous studies [30, 34, 49]. The
”Avg.” reported in the main manuscript represents the mean
performance gains across three independent tasks, which is
notably excluded from the calculation of overall task-level
performance gains. The experiments are implemented with
PyTorch and executed on NVIDIA A100-80G GPUs.

B. Office-31 Image Classification Results

This appendix section provides a thorough discussion of
our experimental results on Office-31 [52] dataset, present-
ing detailed observations of performance that were omitted
from the main text due to space limitations.

As shown in Table 5, Rep-MTL achieves the highest
overall performance among all compared MTO methods. It
obtains an average accuracy (Avg.T) of 94.38% and a total
performance gain (Apgk 1) of +1.31% over the single-task
learning (STL) baseline. This result surpasses the next-best
method, DB-MTL, which achieves a gain of +1.05%, and
stands in stark contrast to the Equal Weighting (EW) base-
line that suffers from negative transfer among tasks (A =
—0.61%). This demonstrates Rep-MTL’s superior ability to
effectively manage multi-domain learning on Office-31.

In addition, task-specific performance reveals several

notable findings. First, on both the Webcam and Ama-
zon domains, Rep-MTL achieves competitive accuracies
of 98.67% and 85.93%, respectively. Its performance on
the challenging Amazon domain is particularly noteworthy,
outperforming the strong DB-MTL [30] baseline by a sig-
nificant margin of +0.81%. This improvement is particu-
larly significant due to the varying lighting conditions and
image quality. Second, on DSLR domain, Rep-MTL de-
livers a competitive accuracy of 98.54%, narrowly trailing
DB-MTL [30] (98.63%) in a tightly contested result.

These results offer key insights into the strengths and
limitations of Rep-MTL. On one hand, Rep-MTL demon-
strates capabilities to handle multiple tasks effectively, con-
sistently achieving balanced and top-tier performance gains
across different tasks. The substantial gains on the Amazon
and Webcam tasks more than compensate for the marginal
difference on DSLR, leading to the best overall average. On
the other hand, however, this balanced approach comes with
a trade-off: while Rep-MTL avoids significant performance
degradation in task-specific performance compared to ex-
isting methods, it may not consistently achieve significant
gains across all sub-tasks simultaneously. This observation
is particularly evident in the results of the DSLR task on
Office-31 [52] dataset, where Rep-MTL achieves strong but
not leading performance.

Overall, the experimental results suggest that while Rep-
MTL has successfully advanced the state-of-the-art in chal-
lenging multi-task dense prediction benchmarks, there re-
mains scope for further enhancement. Future research di-
rections could focus on developing mechanisms to maintain
the current balanced performance with explicit information
sharing while pushing the boundaries of task-specific excel-
lence. This could potentially involve exploring more com-
plex cross-task interactions or adaptive optimization strate-
gies that can better leverage task-specific characteristics.

C. Ablations with PL. Exponent Alpha Metrics

While our analysis in Section 4.3 demonstrates Rep-MTL’s
overall effectiveness in achieving effective multi-task learn-
ing—facilitating positive cross-task information sharing
while preserving task-specific patterns for negative transfer
mitigation—it does not isolate the contributions of individ-
ual components. This appendix section thus presents an ad-
ditional empirical evaluation of Rep-MTL’s two key mech-
anisms: Cross-Task Saliency Alignment (CSA) and Task-
specific Saliency Regularization (TSR). We first introduce
the practical implications of this metric, followed by abla-
tion studies examining each component’s effectiveness and
distinct contribution to Rep-MTL’s overall performance.

C.1. Power Law (PL) Exponent Alpha Analysis

To rigorously evaluate the effectiveness of Rep-MTL’s
components beyond commonly-used performance metrics,
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Figure 4. Ablation studies through PL exponent metrics [46] for
shared parameters in backbones trained with or without cross-
task saliency alignment (notated as “Rep-MTL w/o CA”) on
NYUv2 [59]. The PL exponent alpha quantifies how well the
backbone adapts to the overall MTL objectives, where lower val-
ues indicate more effective training. Values outside the range [2, 6]
suggest potential over- or under-training due to the insufficient
cross-task positive transfer. We leverage this measurement to val-
idate the effectiveness of the cross-task saliency alignment mech-
anism in our proposed Rep-MTL, as well-trained backbones sug-
gest beneficial information sharing to the overall MTL objectives.

we employ Power Law (PL) exponent alpha [44, 46], a
theoretically grounded measure from Heavy-Tailed Self-
Regularization (HT-SR) theory [41, 45]. It provides a sys-
tematic framework for analyzing the representation capac-
ity and overall learning quality of deep neural networks. In
particular, PL exponent alpha is computed for each layer’s
weight matrix W by fitting the Empirical Spectral Density
(ESD) of its correlation matrix X = WZW to a truncated
Power Law distribution: p(\) ~ A~%, where p(\) denotes
the ESD, and A represents eigenvalues of correlation matrix.

Empirical studies have established that well-trained neu-
ral networks typically exhibit PL exponent values within the
range o € [2,4]. Values outside this range often indicate
suboptimal training dynamics: specifically, o < 2 suggests
insufficient learning, while oo > 6 indicates potential over-
parameterization or training instabilities. This characteristic
makes the PL exponent particularly valuable for assessing
training effectiveness across different network architectures
and optimization strategies.

In the context of multi-task learning, this metric offers
unique insights into both cross-task knowledge transfer and
task-specific learning patterns. In particular, for shared
backbone parameters, lower alpha values (within the opti-
mal range) typically indicate effective cross-task informa-
tion sharing, suggesting successful optimization toward the
overall MTL objectives. For task-specific heads, balanced
and moderately low alpha values across different tasks sug-
gest the preservation of task-specific patterns while mini-
mizing negative transfer effects. Built upon this view, we

can systematically evaluate how each component in Rep-
MTL contributes to achieving optimal MTL dynamics.

C.2. Effects of Cross-Task Saliency Alignment

Similar to the empirical analysis in Section 4.3, we analyze
the effectiveness of Cross-Task Saliency Alignment by ex-
amining PL exponent alpha of the DeepLabV3+ backbone
parameters on NYUv2 [59] dataset.

As shown in Figure 4, models trained with our cross-
task alignment mechanism exhibit alpha values within the
optimal range of [2,4], indicating well-learned and gener-
alizable model parameters in the shared backbone, compar-
ing models trained with and without this alignment mecha-
nism. This demonstrates the effectiveness of our Cross-Task
Saliency Alignment for positive information sharing.

C.3. Effects of Task-specific Saliency Regulation

To evaluate the impact of Task-specific Saliency Regula-
tion, we examine the PL exponent alpha of parameters in
the DeepLabV3+ task decoder parameters on NYUv2 [59].

As illustrated in Figure 5, the result reveals that mod-
els employing our regulation mechanism demonstrate al-
pha values consistently within the optimal range and exhibit
more balanced values across all task-specific heads. This
balanced distribution suggests the successful preservation
of task-specific features while avoiding over-specialization
or interference between tasks (2.60,2.63,2.45). In con-
trast, models trained with Rep-MTL without this regula-
tion mechanism exhibit poor and more dispersed PL expo-
nent alpha across decoders (2.89,2.74,2.59). This wider
variation indicates potential negative transfer and subopti-
mal task-specific learning. The consistency of alpha val-
ues across different task heads in regulated models provides
strong evidence that the Task-specific Saliency Regulation
in Rep-MTL effectively maintains task-specific patterns.

D. Additional Empirical Analysis

This appendix section presents an empirical investigation
designed to further validate the effectiveness and robust-
ness of Rep-MTL. We conduct empirical analyses of hyper-
parameter sensitivity and computational efficiency to pro-
vide insights into the practical deployment considerations.

D.1. Analysis of Hyper-parameter Sensitivity

We systematically evaluate Rep-MTL’s sensitivity to its
two primary hyper-parameters, M5, and Acsq, on the
NYUv2 [59] dataset.  Figure 6 illustrates the task-
level performance gains relative to STL baselines (Ap,g)
across various hyper-parameter configurations. Our anal-
ysis involves fixing one hyper-parameter at 0.9 while
varying the other one across a comprehensive range:
{0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9}. For example,
when evaluating the sensitivity of hyper-parameter A,



Ablations through PL Exponent Analysis of Task-specific Head Parameters on NYUv2
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Figure 5. Ablation studies through PL exponent metrics [44, 40] for parameters in diverse decoders trained with or without task-specific
saliency regulation in Rep-MTL (notated as “Rep-MTL w/o TR”) on NYUv2 [59]. The PL exponent alpha quantifies how well each decoder
adapts to its task-specific objective, where lower values indicate more effective training. Values outside the range [2, 6] suggest potential
over- or under-training due to task conflicts. The variation across different heads of each method indicates training imbalance. We leverage
this measurement to validate the effectiveness of task-specific saliency regulation in Rep-MTL, as well-trained decoders should exhibit
both low and balanced metric values, indicating successful negative transfer mitigation while preserving task-specific information. The
results show that task-specific saliency regulation effectively helps task-specific learning and yields superior and more balanced metrics.
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Figure 6. Hyper-parameter sensitivity analysis of our Rep-MTL
on NYUvV2 [59] dataset. We empirically evaluate the impact of
two critical hyper-parameters, A¢sr» and Acsq, by fixing one as
A = 0.9 while varying the other one across a comprehensive range
as {0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9}.  The results
demonstrate that Rep-MTL maintains stable and competitive per-
formance Apgg over a substantial range (0.7,0.9,1.1,1.3,1.5),
indicating its robust insensitivity to hyper-parameter variations.

when fixing the A\ s, = 0.9 then conduct a series of exper-
iments. All experiments are conducted on NVIDIA A100-
80G GPUs to ensure consistent evaluation conditions.

The results reveal several key findings: First, Rep-MTL
demonstrates great stability across a wide range of hyper-
parameter combinations, particularly within the range of
{0.7,0.9,1.1,1.3,1.5} for both A\;s, and A.sq. Second, the
method consistently achieves positive performance gains
(Apusk > 0) across most hyper-parameter settings, indicat-
ing robust improvement over STL baselines. Third, Cross-
task Saliency Alignment (CSA) in Rep-MTL, controlled by
Acsas acCts as a crucial component. While small values of
Acsq lead to suboptimal performance, increasing it beyond
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Figure 7. Training time per epoch comparison across different
MTL optimization methods on NYUv2 [59]. Methods are cate-
gorized into three training efficiency tiers (indicated by different
colors), highlighting the inherent trade-off between computational
speed and optimization effectiveness in MTL scenarios.

a certain threshold demonstrates a significant impact on the
overall MTL performance. Based on these observations, we
conducted grid search over {0.7,0.9,1.1,1.3, 1.5} for both
Atsr and A g, to determine optimal configurations for all
datasets in this paper.

D.2. Analysis of Training Time

To further evaluate the efficiency of Rep-MTL, we conduct
a runtime empirical analysis on NYUv2 [59] dataset. Fig-
ure 7 presents the average per-epoch training time across
different MTL optimization methods, with all experiments
conducted over 100 epochs on NVIDIA A100-80G GPUs.
Our analysis reveals that Rep-MTL achieves a compara-
tively favorable balance between training speed and opti-
mization effectiveness. While it requires more training re-
sources than loss scaling methods due to the computation
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Figure 8. Learning rate sensitivity analysis of our proposed Rep-
MTL on NYUV2 [59] dataset. To evaluate the impact of learning
rate variations, we systematically scale the learning rate from the
default benchmark setting of le — 4 to 5e — 4, using a step size
of be — 5. For each setting, we report the task-level (Apuq) and
metric-level (Apmenic) performance gains. Each experiment is re-
peated three times. The results show that Rep-MTL maintains sta-
ble and competitive Apgsk and Apmeric Over a substantial range,
indicating its favorable robustness to learning rate variations.

of task saliencies as task-specific gradients in the represen-
tation space, it demonstrates superior efficiency compared
to most gradient manipulation methods. This increased cost
is inherent to approaches requiring second-order (gradient)
information, representing a fundamental trade-off and room
for further improvement in MTL optimization.

D.3. Analysis of Learning Rate Scaling

Recent studies [64] suggest that different choice of learn-
ing rate may impose a strong impact on MTO methods
performance. To further demonstate Rep-MTL’s robust-
ness, we conduct experiment of learning rate sensitivity on
NYUv2 [59] with diverse learning rate settings, as illus-
trated in Figure 8. Specifically, we scale the learning rate
from the default benchmark setting of 1e — 4 to 5e — 4 with
a step size of 5e — 5. For each setting, we measure the
task-level (Apg,k) and metric-level (Apmpeuic) performance
gains. The results show that Rep-MTL maintains stable and
competitive Apgsk and Appenic OVer a substantial range, in-
dicating its favorable robustness to learning rate variations.
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