
Appendix

A. Implementation Details
Since the most commonly used mobile robots are equipped
with ego-centric RGB-D pinhole cameras currently, we
primarily evaluate VLN methods without panoramic
views in this work. For classic end-to-end single-
step discrete action prediction models (Seq2Seq [25],
CMA [25], and NaVid [64]), we directly use their pub-
licly available code and pre-trained weights. For the
other two model types—the end-to-end continuous multi-
step prediction model (RDP) and the map-based LLM
model (VLMaps [21])—we introduce several modifica-
tions, which are detailed in this appendix.

A.1. Recurrent Diffusion Policy for VLN
The RDP model takes ego-centric RGB-D observations and
language instructions as inputs. Since some instructions
exceed the 77-word limit in standard CLIP [43], Long-
CLIP [63] is used as both the RGB and instruction en-
coders. The depth encoder follows CMA, using ResNet50
pre-trained on point-goal tasks. Each RGB image is rep-
resented by five tokens: The first token encodes the global
feature, while the remaining four tokens capture semantic
information via grid pooling [64]. The flattened depth fea-
tures are added to the first RGB token, resulting in a fused
visual feature dimension of R5×hd , where hd = 512. To
improve progress awareness, we incorporate previous 4-
step actions (PA) and relative coordinates (RC) from the
starting point, both represented in (∆x,∆y,∆yaw). The
key difference is that PA encodes the last four steps rela-
tive to the current position, while RC represents the current
position relative to the starting point.

For historical observation encoding, initially, we experi-
mented with a video-based format, similar to NaVid, where
stacked images provided long-term sequence information.
However, this approach led to rapid convergence of the dif-
fusion process to small losses, causing severe overfitting.
Through our experimentation, we found that employing a
recurrent GRU structure to maintain and update historical
observations improved generalization:

ht = GRU([Vc, RC, PA], ht−1). (10)

Then, we apply two cross-attention mechanisms to align
attended vision (q = Concat(ht, Vc)) and language features
I = {wi}Li=1, where each modality serves as the key and
value for the other:

g1 = CrossAttn(q, I, I), g2 = CrossAttn(I, q, q). (11)

Finally, the condition feature for the diffusion model is
formed by concatenating all extracted features:

ct = Concat(g1, g2, ht, RC, PA). (12)

Turn around 180 degrees. Go down the hallway to the right …

Walk passed the dining table and continue towards the kitchen …

Walk out of the bedroom through the open door into the hallway …

RGB Depth Top-down Outputs

Figure 7. Examples of the robot observations and RDP outputs.

We employ a transformer-based diffusion module [48]
with one encoder layer and three decoder layers. Dur-
ing training, the ground-truth trajectory coordinates T ×
(∆x,∆y,∆yaw) are perturbed with random noise, and the
network is trained to predict and remove this noise. The iter-
ative denoising process follows DDPM [18]. Additionally,
we introduce a self-attention-based stop prediction head to
determine the current stop progress (from 0 to 1). The stop
signal is triggered if: All predicted actions from the diffu-
sion head are below the threshold 0.1, or the stop progress
output exceeds 0.8. The output of the RDP is shown in
Fig. 7. During navigation, RDP predicts 8 future trajectory
waypoints and executes 4 steps per iteration.

In our experiments, RDP demonstrated improvements
over the previous baseline models (Seq2Seq and CMA)
when trained from scratch. However, there remains signif-
icant potential for further enhancement. As this paper pri-
marily focuses on the new physical VLN platform (VLN-
PE), we introduce RDP as a baseline method for predicting
trajectory waypoints, which can be further integrated with
control-theoretic approaches like the Model Predictive Con-
trol (MPC) framework to enhance motion smoothness, ad-
dressing the jerky transitions seen in discrete action-based
methods. We hope this work can inspire and support some
future research in this direction.

A.2. Improved VLMaps
VLMaps differs from traditional end-to-end models by uti-
lizing a spatial semantic map representation that directly in-
tegrates pre-trained vision-language features of the physical
world. This approach enables natural language-based map
indexing without requiring additional labeled data. There-
fore, we chose this method as one of the technical pipelines

Figure 8. Framework of the improved VLMaps.

for evaluation. However, the original VLMaps lacks a di-
rect exploration policy and struggles with room-level de-
scriptions (e.g., “enter the living room”), which require an
agent-oriented perspective rather than reliance on a global
semantic map. To address these limitations, we improved
the VLMaps framework (as shown in Fig. 8) with two key
enhancements.

Exploration Policy: Inspired by VLFM [62], we imple-
ment a frontier detection strategy, where a frontier is de-
fined as the boundary between explored and unexplored ar-
eas. When the robot fails to detect the target object from the
current pixel embeddings, it performs a turn-around maneu-
ver, moves to each frontier, and evaluates whether the view-
point is likely to contain the next landmark using the image
and text encoders from LSeg. For instance, we observed
that “table” exhibits a higher similarity score with scenes of
“dining room” compared to “toilet,” validating the policy’s
ability to guide the robot toward plausible directions.

Room-Level Descriptions: Similarly, we leverage the
CLIP module from LSeg as a classifier to assess whether the
viewpoint aligns with the intended room context. Specifi-
cally, we use a predefined set of room names (“living room,”
“dining room,” “bedroom,” “kitchen,” “toilet,” “others”) as
text inputs to index the current RGB image. Upon success-
ful room detection, we naturally incorporate actions such as
self.move to room(’room name’).

In the VLN-PE, we apply additional techniques to re-
duce the fall rate and stuck rate. For example, we imple-
ment an A* algorithm as the local planner, assigning higher
costs to dilated and unexplored areas. When executing com-
mands like self.move forward(1), the robot may
collide with obstacles if not properly oriented. To address,
we define a cost function to identify the optimal node n∗

from the robot’s perspective: n∗ = argmin
n

(||dist(n, x0)−

dist(xg, x0)||+αγ), where xg is the goal position, x0 is the

current position, α = 0.25 is a weight parameter, and γ is
the angle required to face the target. This ensures the robot
slightly reorients itself before moving forward, minimizing
collision risks. An example of the improved VLMaps is
shown in Fig. 9. Compared to end-to-end methods, map-
based modular approaches offer more explainable and re-
liable results. However, their performance heavily depends
on mapping and localization accuracy, which could limit the
practical deployment.

A.3. Experimental Details
All training experiments are conducted using NVIDIA RTX
4090 GPUs. The CMA and Seq2Seq models are trained
on a single GPU with a batch size of 2, requiring approxi-
mately one day to converge. The RDP model is trained on
4 GPUs using PyTorch’s DataParallel module, with a total
batch size of 8, and completes training in around two days.
All models are optimized using the AdamW optimizer with
a learning rate of 1×10−4. The maximum trajectory length
is set to 200. For evaluation, the CMA model requires ap-
proximately 4 hours to complete a full evaluation on the
R2R-CE benchmark when run in parallel on 8 GPUs.

A.4. Datasets
The trajectories sampling strategy for the newly introduced
datasets (GRU-VLN10 and 3DGS-Lab-VLN) is as follows:
(a) generate a freemap, (b) randomly sample start-goal
pairs, and (c) filter out invalid paths (overly short, long,
or similar ones). Instructions are generated via a modu-
lar pipeline [17] with action and environment recognition,
GPT-4 in-context description, and human refinement. Com-
parisons of datasets are presented in Fig. 10.

A.5. Metrics
Metrics. Following standard VLN evaluation protocols [2,
25], we use five primary metrics: Trajectory Length (TL),
measured in meters; Navigation Error (NE), which quanti-
fies the distance between the predicted and actual stop lo-
cations; Success Rate (SR), indicating how often the pre-
dicted stop location falls within a predefined distance of
the true location; Oracle Success Rate (OS), which assesses
the frequency with which any point along the predicted
path is within a certain distance of the goal; and Success
Rate weighted by Inverse Path Length (SPL), which bal-
ances success rate with path efficiency. As physical real-
ism is a key focus of this work, we introduce two more
metrics: Fall Rate (FR), which measures the frequency of
unintended falls, and Stuck Rate (StR), which quantifies in-
stances where the agent becomes immobilized. Specifically,
“Fall” is the robot having a roll > 15° or pitch > 35°,
or a center-of-mass–to-foot height below a robot-specific
threshold. “Stuck” is defined as both position and heading
change < 0.2m and 15° for 50 steps.

Figure 9. Example of improved VLMaps. Blue dot: current position (black line: orientation). Green dot: frontiers (black line: exploration
orientation). White: dilated obstacles. Light gray: explored area. Dark gray: unexplored area. Blue line: local planner trajectory.

Figure 10. Comparison of distributions across datasets.

A.6. Controllers

Thanks to NVIDIA Isaac Sim’s advanced physical simu-
lation capabilities, we can seamlessly apply various con-
trol theories, making the low-level control policy more di-
verse and aligned with real-world robotic applications. In
this work, we utilize three types of controllers for experi-
mentation: flash control, move-by-speed control, and move-
along-path control.

• Flash Control: This mechanism mimics platforms that
lack physical cross-embodiment support, allowing the

agent to instantly reach the target position without con-
sidering physical motion constraints.

• Move-by-Speed Control: This method simulates realistic
motion dynamics by controlling the agent’s velocity us-
ing linear and angular speed commands. For legged hu-
manoid and quadruped robots, we employ the RL-based
policies to regulate movement, ensuring the robot follows
the required forward and rotational speeds. For wheeled
robots, we use a differential drive controller to manage
navigation. For end-to-end models, we implement dis-
crete actions using this controller.

• Move-along-Path Control: This approach enables the
agent to follow a predefined trajectory, replicating path-
following behaviors in robotic navigation. For the Map-
based method (VLMaps), we apply the A* path planning
algorithm and use this controller with a PID system to
ensure smooth trajectory following.

A.7. Fine-tune on the specific datasets

To better evaluate out-of-MP3D-style domain generaliza-
tion, we collect additional VLN datasets using GRUScenes
and 3DGS-rendered environments. Since these datasets are
primarily used for evaluation, only a small portion of the

data is allocated for training, while the majority is reserved
for testing. For CMA and RDP, all training experiments
use a learning rate of 1e-4 with a cosine learning schedule.
In Tab. 2 and Tab. 3, “w/o FT” refers to direct zero-shot
transfer using VLN-PE-R2R-trained weights for evaluation
without further in-domain fine-tuning in these new scenes.
On the GRU-VLN10 dataset, small models significantly im-
proved after 10 epochs of fine-tuning, whereas the SoTA
large model NaVid showed limited zero-shot performance.
This highlights the limited diversity of existing VLN bench-
marks, which could not fully assess model generalization.

B. Impact of Sim-to-Real Transfer

Compared to traditional VLN simulators and platforms,
VLN-PE introduces a significant advancement by support-
ing physical VLN across diverse robot types, enabling data
collection, training, and closed-loop evaluation in physical
settings. We begin by identifying the limitations of exist-
ing VLN algorithms when deployed in physical environ-
ments, as initially verified within a physics-enabled simu-
lator. After fine-tuning on data collected through VLN-PE,
we observe consistent performance improvements within
the simulated physical setup. Encouraged by these results,
we further evaluate our approach in real-world settings.
Specifically, we conduct experiments using a Unitree Go2
robot equipped with an Intel RealSense D455 RGB-D cam-
era across 14 indoor episodes (see Table 7 and Fig. 11).
The model fine-tuned with VLN-PE demonstrates improved
adaptation and generalization, confirming the practical ef-
fectiveness of our platform.

In particular, we observe that the CMA baseline model,
after VLN-PE fine-tuning, exhibits more confident forward
movement and better semantic grounding during naviga-
tion. In contrast, the CMA Full baseline trained solely on
VLN-CE struggles in real-world conditions, frequently re-
sulting in aimless rotation and poor generalization. One no-
table remaining challenge is the handling of the stop action.

Method Fine-tuned on VLN-PE OS↑ SR↑

CMA ✗ 14.29 7.14
✓ 57.14 28.57

Table 7. Impact of VLN-PE on real-world performance.

(a) Platform

Instruction: Go straight and turn right into the living room. Continue
go straight and stop in front of the sofa.

① ② ③ ④

⑤ ⑥ ⑦ ⑧

RGB-D
Camera

(a) (b)

Figure 11. Real-world experiments using a Unitree Go2 robot.

CMA often fails to robustly predict when to stop. To mit-
igate this, we let the robot output the stop action when the
predicted probability of the stop action exceeds 1× 10−4.

C. Analysis of Failure Cases
In Tab. 3, we observe that the SoTA ego-centric model,
NaViD [64], shows exceptionally poor zero-shot perfor-
mance (e.g., 5.8 SR and 1.0 SPL) on our 3DGS-Lab-VLN
datasets. The possible reasons for the performance degra-
dation could be summarized as follows: Firstly, the use of
3D Gaussian Splatting (3DGS) for rendering may introduce
artifacts and distortions. As shown in Fig. 13, rendering
artifacts can cause some blurring in ground areas and dis-
tant details, introducing subtle distortions that may go un-
noticed by the human eye. In our experiments, the model
relying solely on RGB input is highly vulnerable to such
pixel-level noise, leading to failure in affected scenes. This
underscores the need for research on image perturbations
and related safety issues in VLN models. Additionally, we
note that the NaViD model frequently rotates in circles to
find a better viewpoint for localizing the target, which ac-
counts for 70% of failures (Fig. 12). In summary, our find-
ings on the limitations of current SoTA VLN methods align
with the conclusions of this paper. We hope our insights and
tools will drive the development of more robust and general-
izable VLN models, especially in diverse, non-MP3D-style
environments.

(a) Platform

Instruction: Go straight and turn right into the living room. Continue
go straight and stop in front of the sofa.

① ② ③ ④

⑤ ⑥ ⑦ ⑧

RGB-D
Camera

(a) (b)

Figure 12. Visualization of the failure cases. (a) shows a typi-
cal failure case where the agent collides and falls. (b) highlights
NaVid’s repetitive turning before stopping (red box).

D. Limitations and Future Work
While this work evaluates various ego-centric VLN meth-
ods, some other state-of-the-art VLN approaches rely on
panoramic observations [1, 3, 24]. These methods use
panoramic views with depth to generate sparse waypoint
connections, integrating them with discrete VLN tech-
niques for path selection—an approach that has demon-
strated strong performance in previous non-physical set-
tings. Since our primary goal is to evaluate the existing
VLN methods under the physical settings, we adopt an ego-
centric view setting to align with current robotic perception
systems. However, as robotics evolves—potentially resem-
bling autonomous driving systems with more diverse RGB
or radar sensors—future robots may benefit from panoramic

Figure 13. Visualization of the failure case for the ego-centric SoTA VLN model, NaViD, in 3DGS online-rendered scenes. The model
tends to predict rotation actions, indicating a failure to interpret the intended trajectory.

perception. Thus, we plan to extend our evaluation to
panoramic VLN methods in future work. Additionally, with
multi-robot support and real-time 3DGS scene rendering,
our platform has significant potential to facilitate a real-
sim-real VLN pipeline, enhancing real-world adaptability
for embodied agents in familiar environments. We leave
this for future research.

E. Additional Qualitative Examples
To better illustrate the observations and environments
within VLN-PE, we provide supplementary videos show-
casing the significant shaking and instability experienced
by physical agents during navigation. Additionally, Fig. 14
presents different viewpoints—ego-centric, third-person,

and top-down—using various robot types in VLN-PE.
Fig. 15 displays trajectories and instructions from our newly
introduced 10 high-quality synthetic scenes (GRU-VLN10)
and a 3DGS online-rendered scene (3DGS-Lab-VLN), sup-
porting out-of-MP3D-style evaluations.

……

……

……

Ego-
centric
View

Third-
person
View

Top-
down
View

Go straight down the hallway and into the room at the end. Turn left into the bathroom and stop.

……

……

……

Ego-
centric
View

Third-
person
View

Top-
down
View

Exit the room under construction and move into the hall. Turn into the first bedroom on the right and stand in the
doorway of the bathroom.

……

……

……

Ego-
centric
View*

Third-
person
View

Top-
down
View

walk down the hallway to the right, there will be a green sign on the window on your left. continue straight and stop
when there is an empty office on your left, and an office with an apple computer on a white desk with a black chair on
your right.

* In the simulation, we raised the Jetbot-wheeled robot's camera height to approximately 1.2 m to compensate for its low position.

Figure 14. Visualization of different robot viewpoints in VLN-PE. Leveraging the powerful interactive capabilities of Isaac Sim, researchers
can easily observe robot motion from various perspectives within the environment.

Turn left into the bathroom with a round mirror above the sink. Move through the indoor space, steering left into the
empty room. Proceed to the living room, then enter the dining room with a table and chairs near the window. Continue
straight to the kitchen, stopping at the sink.

Turn right, move forward past the wooden counter to the long white table, then turn left at the workbench. Continue
forward, passing the white bench and wooden crates, then enter near the wall with exposed pipes. Finally, turn left and
stop by the ladder.

Figure 15. Examples of trajectories and instructions from our introduced GRU-VLN10 and 3DGS-Lab-VLN datasets.

